太赫兹科学与电子信息学报  2020, Vol. 18 Issue (6): 992-997     DOI: 10.11805/TKYDA2019215
基于天通卫星的天线精确对星角度算法改进    [PDF全文]
陈国通, 范圆圆, 刘琪     
河北科技大学 信息科学与工程学院,河北 石家庄 050000
摘要: 基于板载惯导模块的高精确度接收机提供的定位信息和姿态信息,通过旋转坐标系的方法,推导出地理坐标系下天线对星角度,并对现有的天线对星数学模型进行改进,引入地球卯酉圈曲率半径和天线高度,提高了地理坐标系下天线指向角度的精确度。另外,引入姿态信息,建立载体坐标系下天线对星角度模型,减少载体姿态变化带来的影响。最后通过仿真实验表明,改进的算法在一定程度上提高了对星角度的精确度。
关键词: 旋转坐标系    对星数学算法    模型修正    精确度    
Improvement of precision alignment algorithm for antenna based on Tiantong Satellite
CHEN Guotong, FAN Yuanyuan, LIU Qi     
College of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang Hebei 050000, China
Abstract: Based on the positioning information and attitude information provided by the high-precision receiver with the inertial navigation module, through the space rotation coordination system method, the satellite angle in the geographic coordinate system is deduced, and the existing antenna-satellite mathematical model is improved. The radius of curvature of the earth's ring and the height of the antenna are introduced, which improves the accuracy of the antenna pointing angle in the geographic coordinate system. In addition, the attitude information is introduced, and the antenna-satellite angle model in the carrier coordinate system is established to reduce the influence of the carrier attitude. Finally, the simulation results show that the improved algorithm model can improve the accuracy of the antenna pointing angle to some extent.
Keywords: rotating coordinate system    algorithm of aligned satellite    model correction    accuracy    

虽然地面上的通信越来越完善,基本可以满足人们日常生活中的通信需求,但是传统的地面通信却有很多的局限性,例如地面通信的通信距离较短,对通信环境要求较高,需要有固定的地面站来中转信号等[1]。为了弥补地面通信的不足,同时也为了满足某些特殊情况下的通信需求,在移动载体上进行的通信技术——“动中通”(Communication on the Move)技术应运而生[2]。动中通技术中关键技术之一就是天线指向的问题,天线指向精确度是动中通技术的一项重要指标[34]。天通一号卫星是我国自主研制的卫星通信系统的首颗发射卫星,不仅在民用市场具有广阔的前景,更会成为军事通信的中坚力量[56]。本文以天通卫星作为指向卫星,主要研究天线的指向精确度,改进了地理坐标系中天线对星角度的数学模型,同时引入天线的高度,使对星角度更加精确。

文献[7]利用船载平台罗经信号特点分析了地理坐标系的对星角度,但是缺乏不稳定因素影响即有姿态角情况下载体坐标系的推导。文献[8]设大地坐标系为单位矢量,给出了地理坐标系下天线指向计算公式,但地球模型不够准确,有较大的误差。文献[9]引入了地球卯酉圈曲率半径,修正了地球模型,但是忽略了天线的海拔高度,也会有一定的误差。本文在分析这些文献的基础上,引入了天线高度,在不增加算法复杂度的基础上提高了对星精确度,并对3种算法模型进行了分析比较,同时也分析了姿态信息对天线指向角度的影响。

1 地理坐标系下天线对星角度模型

图 1所示,${o_i}{x_i}{y_i}{z_i}$为地心惯性坐标系,ogxgygzg为地理坐标系。天通一号卫星位于地心惯性坐标系中,其经度、纬度和高度分别为${\lambda _i}$, ${\theta _i}$$H$。天通一号运行在地球同步轨道,运行轨道与地球赤道重合,所以其纬度${\theta _i} = 0$,其星下点为${p'}$。车载天线A点位于地理坐标系中,其经度和纬度分别为λ, θ

Fig.1 Antenna ideal model in the geographic coordinate system 图 1 地理坐标系中天线理想模型

地球半径为$R$,天通一号卫星在地心惯性坐标系中的投影为:

$\left\{ \begin{array}{l} {x_i} = \left( {R + H} \right)\sin {\theta _i} \\ {y_i} = \left( {R + H} \right)\cos {\theta _i}\cos {\lambda _i} \\ {z_i} = \left( {R + H} \right)\cos {\theta _i}\sin {\lambda _i} \\ \end{array} \right.$ (1)

其中${\theta _i} = 0$,所以:

$\left\{ \begin{array}{l} {x_i} = {\rm{0}} \\ {y_i} = \left( {R + H} \right)\cos {\lambda _i} \\ {z_i} = \left( {R + H} \right)\sin {\lambda _i} \\ \end{array} \right.$ (2)

获取天通一号在地理坐标系${o_\text{g}}{x_\text{g}}{y_\text{g}}{z_\text{g}}$的位置,需要经过以下步骤:第一步,绕${o_i}{x_i}$逆时针旋转$\lambda $,得到坐标系${o_i}'{x_i}'{y_i}'{z_i}^{}$,旋转后${o_i}'{z_i}'$A点所在经线圈的垂线方向上,与${o_\text{g}}{z_\text{g}}$重合,同时得到旋转因子${M_1}$;第二步,绕${o_i}'{z_i}'$逆时针旋转$\theta $,得到坐标系${o_i}{''}{x_i}{''}{y_i}'{z_i}'$,得到旋转因子${M_2}$;第三步,在${o_i}{''}{y_i}{''}$方向上平移地球半径$R$

所以,天通一号卫星在地理坐标系中的位置矢量可以表示为:

$\left[ \begin{gathered} {x_\text{g}} \\ {y_\text{g}} \\ {z_\text{g}} \\ \end{gathered} \right] = {M_2} \times {M_1} \times \left[ \begin{gathered} {x_i} \\ {y_i} \\ {z_i} \\ \end{gathered} \right] - \left[ \begin{gathered} 0 \\ R \\ 0 \\ \end{gathered} \right]$ (3)

式中旋转因子${M_1}$, ${M_2}$分别为:

${M_1} = \left[ \begin{array}{l} 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0 \\ 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \;\, {\kern 1pt} \cos \lambda {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \;\sin \lambda \\ 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \;\; - \sin \lambda {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \;{\kern 1pt} \cos \lambda \\ \end{array} \right]$ (4)
${M_2} = \left[ \begin{gathered} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos \theta {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin \theta {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \;\;{\kern 1pt} {\kern 1pt} 0 \\ {\rm{ - }}\sin \theta {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos \theta {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \;\;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0 \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 1 \\ \end{gathered} \right]$ (5)

${M_1}$, ${M_2}$代入式(3)中,得到

$\left[ \begin{gathered} {x_\text{g}} \\ {y_\text{g}} \\ {z_\text{g}} \\ \end{gathered} \right] = \left( {R + H} \right)\left[ \begin{gathered} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin \theta \cos \left( {{\lambda _i} - \lambda } \right) \\ \cos \theta \cos \left( {{\lambda _i} - \lambda } \right) - \frac{R}{{R + H}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin \left( {{\lambda _i} - \lambda } \right) \\ \end{gathered} \right]$ (6)

移动卫星通信系统的地面接收天线是利用指向卫星的直视波束来跟踪卫星的,表示地面接收天线指向的基本参数有两个:一个是方位角度(表示方位方向位置);另一个是俯仰角度(表示俯仰方向位置)[1011]。这也是系统初始对准天通卫星和跟踪天通卫星的两个基本的参数[12]。天通一号卫星在地理坐标系中的位置矢量如图 2所示,$\theta a1$为俯仰角,向上为正;$\phi 1$为方位角,与正北方向的夹角,且顺时针旋转为正。根据图 2,可以计算出天通一号卫星在地理坐标系下的投影为:

$\left\{ \begin{array}{l} {x_\text{g}} = H\cos \left( {\theta 1} \right)\cos \left( {\phi 1} \right) \\ {y_\text{g}} = H\sin \left( {\theta 1} \right) \\ {z_\text{g}} = H\cos \left( {\theta 1} \right)\sin \left( {\phi 1} \right) \\ \end{array} \right.$ (7)
Fig.2 Schematic diagram of azimuth and pitch in the geographic coordinate system 图 2 地理坐标系中方位角、俯仰角示意图

地理坐标系中,天通一号卫星的俯仰角为:

$\tan (\theta 1) = \frac{{{y_\text{g}}}}{{\sqrt {{x_\text{g}}^2{\rm{ + }}{{\rm{z}}_\text{g}}^2} }}$ (8)

方位角为:

$\tan (\phi 1) = \frac{{{z_\text{g}}}}{{{x_\text{g}}}}$ (9)

将式(7)带代入式(8)、式(9)中,得到式(10)、式(11),可以计算出天线在地理坐标系中的方位角和俯仰角。

$\theta 1 = {\rm{arctan}}\left( {\frac{{\cos \theta \cos \left( {{\lambda _i} - \lambda } \right) - \frac{R}{{R + H}}}}{{1 - {{\left( {\cos \theta \cos ({\lambda _i} - \lambda )} \right)}^2}}}} \right)$ (10)
$\phi 1 = {\rm{arctan}}\left( {\frac{{\tan ({\lambda _i} - \lambda )}}{{\sin \theta }}} \right){\rm{ + 180}}$ (11)
2 地理坐标系下天线对星角度修正 2.1 引入地球卯酉圈曲率半径

根据公式(1)可以看出,在计算天通一号卫星在地心惯性坐标系下的投影时,是将地球看成一个半径为R的标准球体,这样虽然能简化计算,但是对于精确度要求比较高的天线来说,会带来很大的误差,所以需要进一步考虑地球是椭球体时的情况。如图 3所示,在建立地心惯性坐标系时,考虑了椭球体的长半轴和短半轴不一的情况,椭圆的长半轴(赤道半径)为$a = 6\;378\;137{\rm{ m}}$,短半轴(极半径)为$a = 6\;356\;752{\rm{ m}}$。制定了更接近真实情况的地球模型[13],此时地球上某一点到地心的距离为该点的卯酉圈曲率半径$N$。星下点${P'}$在赤道上,所以其半径长度为赤道半径,可以将式(1)修正为:

$\left\{ \begin{array}{l} {x_i} = \left( {a + H} \right)\sin {\theta _i} \\ {y_i} = \left( {a + H} \right)\cos {\theta _i}\cos {\lambda _i} \\ {z_i} = \left( {a + H} \right)\cos {\theta _i}\sin {\lambda _i} \\ \end{array} \right.$ (12)
Fig.3 Earth ellipsoid coordinate system 图 3 地球椭球坐标系

公式(3)修正为:

$\left[ \begin{gathered} {x_\text{g}} \\ {y_\text{g}} \\ {z_\text{g}} \\ \end{gathered} \right] = {M_2} \times {M_1} \times \left[ \begin{gathered} {x_i} \\ {y_i} \\ {z_i} \\ \end{gathered} \right] - \left[ \begin{gathered} {\kern 1pt} 0 \\ N \\ {\kern 1pt} 0 \\ \end{gathered} \right]$ (13)

将公式(12)代入公式(13)中,得到天通卫星在椭球体地理坐标系下的位置矢量为:

$\left[ \begin{gathered} {x_\text{g}} \\ {y_\text{g}} \\ {z_\text{g}} \\ \end{gathered} \right] = \left( {a + H} \right)\left[ \begin{gathered} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin \theta \cos \left( {{\lambda _i} - \lambda } \right) \\ \cos \theta \cos \left( {{\lambda _i} - \lambda } \right) - \frac{N}{{a + H}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin \left( {{\lambda _i} - \lambda } \right) \\ \end{gathered} \right]$ (14)

式中$N$为地球卯酉圈曲率半径,其表达式为:

$\left\{ \begin{array}{l} N = \frac{a}{{\sqrt {1 - {e^2}{{\sin }^2}{\theta _i}} }} \\ e = \frac{{\sqrt {{a^2} - {b^2}} }}{a} \\ \end{array} \right.$ (15)

式中$e$为椭球体的第一曲率半径[14]。根据公式(14),将地球的长半轴和短半轴考虑到对星角度数学模型中,能够求出更加精确的地理坐标系下天线指向角度。

2.2 引入天线海拔高度

2.1中的数学模型将地球看成了一个椭球体,相比将地球看成一个规则的球体,对星角度的精确度进一步提高。但是,在实际工程实践中,天线是有一定高度的。比如到海拔较高的山脉或者装载在飞机上,其高度是不可以忽略的。所以,在引入地球卯酉圈曲率半径的基础上,又引入了天线高度,假设为$h$

在地心惯性坐标系转换到地理坐标系的第三步中,在${o_i}{''}{y_i}{''}$方向上平移地球半径$R$,此时是没有考虑天线高度的。所以将公式(13)修正为:

$\left[ \begin{gathered} {x_\text{g}} \\ {y_\text{g}} \\ {z_\text{g}} \\ \end{gathered} \right] = {M_2} \times {M_1} \times \left[ \begin{gathered} {x_i} \\ {y_i} \\ {z_i} \\ \end{gathered} \right] - \left[ \begin{gathered} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0 \\ N + h \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0 \\ \end{gathered} \right]$ (16)

所以,得到天通卫星在椭球体地理坐标系且考虑天线高度的情况下的位置矢量为:

$\left[ \begin{gathered} {x_\text{g}} \\ {y_\text{g}} \\ {z_\text{g}} \\ \end{gathered} \right] = \left( {N + H} \right)\left[ \begin{gathered} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin \theta \cos \left( {{\lambda _i} - \lambda } \right) \\ \cos \theta \cos \left( {{\lambda _i} - \lambda } \right) - \frac{{N{\rm{ + }}h}}{{N + H}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin \left( {{\lambda _i} - \lambda } \right) \\ \end{gathered} \right]$ (17)

此时,得到的方位角和俯仰角为:

$\left\{ \begin{array}{l} \phi 1 = {\rm{arctan}}\left( {\frac{{\tan \left( {{\lambda _{\rm{i}}} - \lambda } \right)}}{{\sin \theta }}} \right) + 180^\circ \\ \theta 1 = \left( {\frac{{\cos \theta \cos \left( {{\lambda _{\rm{i}}} - \lambda } \right) - \frac{{N{\rm{ + }}h}}{{N + H}}}}{{1 - {{\left( {\cos \theta \cos \left( {{\lambda _{\rm{i}}} - \lambda } \right)} \right)}^2}}}} \right) \\ \end{array} \right.$ (18)
3 载体坐标系下天线对星角度

上面描述的情况是在载体静止的情况下考虑的,但是实际中载体是一直变化的。天通一号卫星在载体坐标系中的方位角、俯仰角如图 4所示。此时就需要将地理坐标系下的天线指向转换到载体坐标系下。地理坐标系到载体坐标系,实际是将姿态角度进行补偿,即补偿航向角、纵摇角和偏航角。要将地理坐标系下的位置矢量转换到载体坐标系,需要经过三次旋转。

Fig.4 Schematic diagram of azimuth and elevation angles in the carrier coordinate system 图 4 载体坐标系中方位角、俯仰角示意图

第一转,$o{x_\text{g}}{y_\text{g}}{z_\text{g}}$坐标系绕$o{z_\text{g}}$轴逆时针旋转偏航角$Y$,得到坐标系$o{x_1}{y_1}{z_1}$,表示为:

$\left[ \begin{gathered} {x_{\rm{1}}} \\ {y_1} \\ {z_1} \\ \end{gathered} \right] = \left[ {\begin{array}{*{20}{c}} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}0 \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} 0 \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt}1 \\ \end{array}} \right ]\left[ \begin{gathered} {x_\text{g}} \\ {y_\text{g}} \\ {z_\text{g}} \\ \end{gathered} \right]$ (19)

第二转,$o{x_1}{y_1}{z_1}$坐标系绕$o{x_1}$轴顺时针旋转纵摇角$P$,得到$o{x_2}{y_2}{z_2}$坐标系。可以表示为

$\left[ \begin{gathered} {x_2} \\ {y_2} \\ {z_2} \\ \end{gathered} \right] = \left[\begin{array}{l} 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0 \\ 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos P{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \sin P \\ {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin P{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos P{\kern 1pt} {\kern 1pt} \\ \end{array} \right ]\left[ \begin{gathered} {x_1} \\ {y_1} \\ {z_1} \\ \end{gathered} \right]$ (20)

第三转,$o{x_2}{y_2}{z_{\rm{2}}}$坐标系绕$o{y_{\rm{2}}}$轴顺时针旋转横摇角$R$,得到$o{x_b}{y_b}{z_b}$。可以表示为:

$\left[ \begin{gathered} {x_b} \\ {y_b} \\ {z_b} \\ \end{gathered} \right] = \left[ \begin{gathered} \cos R{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{ }}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin R \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{ }}{\kern 1pt} {\kern 1pt} 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \\ - \sin R{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos R \\ \end{gathered} \right]\left[ \begin{gathered} {x_{\rm{2}}} \\ {y_2} \\ {z_2} \\ \end{gathered} \right]$ (21)

计算得出:

$\left[ \begin{gathered} {x_b} \\ {y_b} \\ {z_b} \\ \end{gathered} \right] = \left[ \begin{gathered} \cos R\cos Y{\rm{ + }}\sin R\sin P\sin Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \cos R\sin Y{\rm{ + }}\sin R\sin P\cos Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin R\cos P \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos P\sin Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos P\cos Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \sin P \\ - \sin R\cos Y{\rm{ + }}\cos R\sin P\sin Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin Y\sin R{\rm{ + }}\cos R\sin P\cos Y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos R\cos P{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \\ \end{gathered} \right]\left[ \begin{gathered} {x_\text{g}} \\ {y_\text{g}} \\ {z_\text{g}} \\ \end{gathered} \right]$ (22)

根据图 4,可以得到公式(23):

$\left[ \begin{gathered} {x_b} \\ {y_b} \\ {z_b} \\ \end{gathered} \right] = \left[ \begin{gathered} \cos \theta \sin (\phi ) \\ \cos \theta \cos (\phi ) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin \theta \\ \end{gathered} \right]$ (23)

将公式(23)代入公式(22)中,得到公式(24):

$\left[ \begin{gathered} {x_b} \\ {y_b} \\ {z_b} \\ \end{gathered} \right] = \left[ \begin{gathered} \cos R\cos (\theta 1)\sin (\phi 1 - Y){\rm{ + }}\sin R\sin P\cos (\theta 1)\cos (\phi 1 - Y){\rm{ + }}\sin R\cos P\sin (\theta 1) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos P\cos (\theta 1)\cos (\phi 1 - Y){\rm{ - }}\sin P\sin (\theta 1) \\ \sin R\cos (\theta 1)\sin (\phi 1 - Y){\rm{ + }}\cos R\sin P\cos (\theta 1)\cos (\phi 1 - Y) + \cos R\cos P\sin (\theta 1) \\ \end{gathered} \right]$ (24)

根据公式(24),可以计算出载体坐标系中的俯仰角($\theta $)和方位角($\phi $)。

$\left\{ \begin{array}{l} \theta = {\rm{arcsin}}\left( {{z_b}} \right) \\ \phi = {\rm{arctan}}\left( {\frac{{{x_b}}}{{{y_b}}}} \right) \\ \end{array} \right.$ (25)

将公式(24)带入公式(25)到如下公式:

$\left\{ \begin{array}{l} \theta = {\rm{arcsin}}\left( {\sin R\cos (\theta 1)\sin (\phi 1 - Y){\rm{ + }}\cos R\sin P\cos (\theta 1)\cos (\phi 1 - Y) + \cos R\cos P\sin (\theta 1)} \right) \\ \phi = {\rm{arctan}}\left( {\frac{{\left( {\cos R\cos (\theta 1)\sin (\phi 1 - Y){\rm{ + }}\sin R\sin P\cos (\theta 1)\cos (\phi 1 - Y){\rm{ + }}\sin R\cos P\sin (\theta 1)} \right)}}{{\cos P\cos (\theta 1)\cos (\phi 1 - Y){\rm{ - }}\sin P\sin (\theta 1)}}} \right) \\ \end{array} \right.$ (26)

在工程应用实践中,偏航角、纵摇角、横滚角可以通过惯性单元测量,俯仰角的定义区间范围一般为[−90°, 90°],这和反正弦函数主值的区间范围是一致的,所以$\theta $就是俯仰角度的真值。方位角定义区间范围一般为[0°, 360°],这个区间范围是不同于反正切函数的主值区域[−90°, 90°]的,所以需要跟据${x_b}$${y_b}$的符号来确定方位角度的真值,其判断方法如表 1所示。

表 1 方位角象限表 Table 1 Azimuth quadrant
4 仿真实验

文献[15]提出天线的指向精确度需达到0.002°左右时,才能做到精确跟踪,所以对于天线来说,即使有0.001°的误差也可能导致对星角度有偏差。本文以天通一号卫星为选星对象,其经度、纬度及高度分别为101.4°、0°和35 786 000 m。对推导出来的公式进行仿真分析。首先分析地球为标准圆球模型和标准椭球模型时,其俯仰误差随经度、纬度的变化,如图 5图 6所示。根据图 5图 6可以看出,标准椭球球体模型与标准圆球模型的误差是逐渐增大的,且基本上会超过0.002°。所以改进的标准的椭球体模型能够提高对星角度的精确度。图 5图 6验证了椭球体模型能使对星角度更加精确。接着在椭球体模型的基础上,增加天线的海拔高度,来验证修改后公式的正确性。根据图 7,可以看出在高度为1 km时,误差已经达到了0.001°,并且随着高度的增加,误差会逐渐增大,所以将高度加入数学模型中是非常有必要的。

Fig.5 Error based on longitude 图 5 误差随经度的变化
Fig.6 Error based on latitude 图 6 误差随纬度的变化
Fig.7 Error based on height 图 7 误差随高度的变化

上述验证了在地理坐标系下数学模型中加入地球卯酉圈曲率半径和天线的海拔高度能进一步增加天线指向的对星精确度。但是,并没有考虑载体坐标系。然而在实际中,车辆是有姿态角的,所以需要分析偏航角、纵摇角以及横滚角对方位角和俯仰角的影响。可以通过GPS获取车辆的经纬度信息,通过惯性测量单元获取车辆的姿态角信息,然后计算出车辆在载体坐标系下的方位角和俯仰角。通过具体的数据分析和对比,得出载体坐标系下的方位角、俯仰角与姿态角度之间存在的关系。表 2以河北石家庄为对星地理位置进行实际分析。

表 2 石家庄(东经114.48°, 北纬38.03°);天通一号(东经101.4°) Table 2 Shijiazhuang (east longitude 114.48°, north latitude 38.03°); Tiantong satellite (east longitude 101.4°)

根据表 2可以看出偏航角对俯仰角基本没有影响,对方位角有影响。随着偏航角的增大,方位角会减小;纵摇角变化不仅会造成仰角变化,同时也会造成方位角变化。仰角会随着纵摇角的增大而减小,而对方位角变化造成的影响不大;横滚角对俯仰角和方位角都会有影响。其中仰角会随着横滚角的增大而减小,方位角变化的影响会随着横滚角的增大而增大。

5 结论

本文以天通卫星作为指向对星,研究了天线对星角度的问题。改进了原有的地理坐标系下天线指向数学模型,即引入地球卯酉圈曲率半径和天线高度,给出了更加准确的天线对星角度公式,至少能提高0.002°。同时也考虑到实际中不稳定因素的影响,即引入姿态角,给出了载体坐标系下天线对星数学模型,并分析偏航角、纵摇角和横滚角对方位角和俯仰角的影响。经过仿真实验可以看出,改进的数学模型能够提高天线对星性能。

参考文献
[1]
赵海军.低成本车载相控阵动中通天线跟踪技术[D].合肥: 合肥工业大学, 2015. (ZHAO Haijun. Low cost automotive phased array antenna tracking technology of on the move. Hefei, China: Hefei University of Technology, 2015.)
[2]
FAN Q, WANG Y. Design of vehicle antenna servo tracking system controller[C]// 2015 4th International Symposium on Electrical & Electronics Engineering, 2015.
[3]
吴江, 王博. 大型反射面天线轨道不平度对指向精确度的影响[J]. 太赫兹科学与电子信息学报, 2017, 15(4): 634-639. (WU Jiang, WANG Bo. Influence of track irregularity on the pointing accuracy for large reflector antenna[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(4): 634-639.)
[4]
郭倩倩, 周晓慧. 基于GPS的无人机天线自动跟踪系统[J]. 计算机应用与软件, 2017, 34(6): 85-87. (GUO Qianqian, ZHOU Xiaohui. UAV antenna automatic tracking system based on GPS[J]. Computer Applications and Software, 2017, 34(6): 85-87.)
[5]
秦红祥, 刘凡, 肖跃.我国卫星移动通信系统发展现状及展望[C]//卫星通信学术年会.北京: 中国通信学会, 2017. (QIN Hongxiang, LIU Fan, XIAO Yue. Development status and prospects of China's satellite mobile communication system[C]// Satellite Communications Academic Annual Meeting. Beijing: China Institute of Communications, 2017.)
[6]
王晓明, 胡鑫, 宋辉. 基于天通和北斗双星的电力应急终端的设计与实现[J]. 电子设计工程, 2019, 27(12): 142-146. (WANG Xiaoming, HU Xin, SONG Hui. Design and implementation of electric emergency terminal based on Tiantong and Beidou double star[J]. Electronic Design Engineering, 2019, 27(12): 142-146.)
[7]
王庆林.车载"动中通"卫星通信地球站天线及其跟踪系统研究[D].南京: 南京邮电大学, 2016. (WANG Qinglin. Research and design of antenna and its tracking system for satellite communication earth station[D]. Nanjing, China: Nanjing University of Posts and Telecommunications, 2016.)
[8]
冯盾.一种新型的车载"动中通"卫星通信地球站跟踪系统软件研究与设计[D].南京: 南京邮电大学, 2016. (FENG Dun. Research and design of the tracking system for a new type vehicle-borne "On The Move" SATCOM earth station[D]. Nanjing, China: Nanjing University of Posts and Telecommunications, 2016.)
[9]
陆磊, 万佑红, 赵来定. 大口径天线精确对星算法改进[J]. 南京邮电大学学报(自然科学版), 2017, 37(6): 50-54. (LU Lei, WAN Youhong, ZHAO Laiding. Improvement of precision alignment algorithm for large diameter antenna[J]. Journal of Nanjing University of Posts and Telecommunications(Science Edition), 2017, 37(6): 50-54.)
[10]
LIU Gongliang, LI Hui. Satellite communication network technology[M]. Beijing: Posts & Telecom Press, 2015.
[11]
WANG Xikun. Research of measuring and control technology of shipborne satellite antenna auto-tracking system[J]. Applied Mechanics and Materials, 2014, 1334-1337.
[12]
杜利明, 柴海莉. 基于GPS信息的天线自跟踪设计[J]. 微计算机信息, 2008, 24(9): 243-244. (DU Liming, CHAI Haili. The design of antenna track based on GPS[J]. Microcomputer Information, 2008, 24(9): 243-244.)
[13]
YANG L, WANG X. Analysis and simulation on error propagation in inertial horizontal coordinate system of space tracking ship[C]//15th International Conference on Optical Communications and Networks (ICOCN). Hangzhou, China: [s.n.], 2016: 1-3.
[14]
查长流, 丁希仑, 俞玉树, 等. 无人机定向天线自跟踪系统研究[J]. 北京航空航天大学学报, 2016, 42(4): 737-744. (CHA Changliu, DING Xilun, YU Yushu, et al. Research on automatic tracking system for directional antenna of UAV[J]. Journal of Beihang University, 2016, 42(4): 737-744.)
[15]
虞梦月. 110米口径超大型全可动天线轴系误差对指向精度的影响[D].西安: 西安电子科技大学, 2014. (YU Mengyue. The influence of shafting error on the precision of 110 m-diameter super large-scale movable antenna[D]. Xi'an, China: Xidian University, 2014.)