一种跳频信号实时跟踪与参数估计方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

伦理声明:



A dynamic tracking and parameter estimation method for Frequency-Hopping signal
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    现有的跳频信号处理方法往往需要积累足够长的样本数据,缺乏实时快速运算的能力,无法处理高速跳频信号。在小样本条件下提出一种跳频信号实时跟踪和参数估计方法。根据跳频信号的频域稀疏性建立信号模型,引入稀疏贝叶斯学习(SBL)算法解决多观测向量(MMV)信号重构问题。在构建新的判决统计量基础上,推导一种保持恒虚警概率的跳变时刻检测方法,设计滑动策略实现跳频信号的实时跟踪。分别利用几何重心法和最小二乘法估计每跳(hop)的载波频率和来波方向(DOA)。实验证明,新方法在低信噪比(SNR)下具有更低的虚警概率,参数估计精确度得到明显提升。

    Abstract:

    The existing Frequency-Hopping(FH) signal processing algorithms often require sufficient data, therefore cannot meet the need of real-time operation or require handling the FH signal with high hopping speed. In order to process FH signals with few samples, a real-time tracking and parameter estimation method is proposed. According to the sparsity in frequency domain, Sparse Bayesian Learning(SBL) is introduced to reconstruct Multiple Measurement Vector(MMV). By constructing new statistic parameter, a hop timing detecting method with constant false alarm probability is derived. Then FH signals can be tracked dynamically according to a sliding strategy. Finally, the proposed method estimates the carrier frequency and Direction-Of-Arrival(DOA) by gravity of geometric center and least square method respectively. Experiments show that the proposed method has lower false alarm probability under low Signal-to-Noise Ratio(SNR), and improves the accuracy of parameter estimation remarkably.

    参考文献
    相似文献
    引证文献
引用本文

杨 佳,黄志英,关 卿,余金峰.一种跳频信号实时跟踪与参数估计方法[J].太赫兹科学与电子信息学报,2018,16(2):253~258

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2016-11-13
  • 最后修改日期:2017-01-08
  • 录用日期:
  • 在线发布日期: 2018-05-07
  • 出版日期:
关闭