基于ARM NEON的静态YUV图像缩小技术
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

伦理声明:



Static YUV image reduction technology based on ARM NEON
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在视频监控领域,视频采集与处理的图像数据都是视频颜色编码方法(YUV)数据格式,而传统的静态YUV图像处理技术存在处理速度、处理质量、应用范围不能同时得到保证等问题。文章提出的基于进阶精简指令集机器(ARM)架构处理器扩展结构(ARM NEON)的静态YUV图像缩小技术,在视频监控领域中广泛应用于图像的压缩存储和样片采集。该技术使用的是ARM的Ambarella S2硬件平台和Linux操作系统,采用64字节对齐块状处理方式来达到。相比于传统的压缩存储技术,该技术速度要快2到3倍,且压缩后图像清晰。仿真测试结果表明该技术具有代码效率高,处理速度快,输出图像质量高,适用环境适应性强的实际应用价值。

    Abstract:

    In the area of video surveillance, the image data of video collecting and processing are in Video color coding method(YUV) data format. But the classical static YUV image processing technology cannot perform well simultaneously in the aspects of processing speed,processing quality and range of application. The method proposed is a static YUV image contraction technology based on Acorn RISC Machine(ARM) architecture processor expansion structure(ARM NEON),and is widely applied in the image compressing and storing and sample collecting. Using ARM's Ambarella S2 hardware platform and Linux operating system,this technology adopts 64 byte alignment block process mode. Compared to traditional compression storage technology,the speed of the proposed technology can be fast by 2 to 3 times,and the image after compression is clear. Experimental results show that the proposed method has high value of practical application for its high code efficiency, fast processing speed,high image output quality and strong adaptation to environment.

    参考文献
    相似文献
    引证文献
引用本文

陈 益,李文钧.基于ARM NEON的静态YUV图像缩小技术[J].太赫兹科学与电子信息学报,2018,16(2):317~322

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2017-10-24
  • 最后修改日期:2017-11-29
  • 录用日期:
  • 在线发布日期: 2018-05-07
  • 出版日期:
关闭