基于随机森林的红外图像超分辨力算法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

四川省科技厅重点研发资助项目(2018GZ0178)

伦理声明:



Infrared image super-resolution algorithm based on random forest
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为提高低分辨力红外图像的分辨力,提出了一种红外图像超分辨力算法。该算法训练2个随机森林模型:红外图像训练第1个模型、配准的多传感器图像训练第2个模型。采用自适应边缘提取算法提取红外图像与可见光图像的边缘,计算输入的低分辨力红外图像块与对应的高分辨力可见光图像块之间的相关系数。根据相关性选择合适的重建模型,用选择的模型重建高分辨力红外图像块,并整合为高分辨力红外图像。实验结果表明,与超分辨力随机森林算法相比,算法重建的高分辨力红外图像具有更高的客观指标,峰值信噪比(PSNR)平均提升了0.09 dB,并且获得更为清晰的主观视觉效果,更接近原始图像。

    Abstract:

    In order to improve the resolution of low-resolution infrared images, this paper proposes an infrared image super-resolution algorithm based on random forest. Firstly, two random forests models are trained independently. The first model is trained by using infrared images, while the second is trained by using registered multi-sensor images. Then, an adaptive extraction algorithm is utilized to extract the edges of infrared images and registered visible light images. The correlation coefficient between the low-resolution patch of infrared image and the high-resolution patch of visible light image is calculated. According to the correlation coefficient, an appropriate model can be selected. Finally, the selected model is utilized to reconstruct the high-resolution infrared patch. All these patches are integrated into a high-resolution infrared image. The experimental results show that the proposed method can obtain better performance compared with the super-resolution random forest algorithm. The Peak Signal to Noise Ratio(PSNR) of testing images is increased by 0.09 dB on average. The reconstructed images, with better visual effect, are closer to original images.

    参考文献
    相似文献
    引证文献
引用本文

王成凯,杨晓敏,严斌宇.基于随机森林的红外图像超分辨力算法[J].太赫兹科学与电子信息学报,2020,18(4):665~671

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2019-04-26
  • 最后修改日期:2019-06-08
  • 录用日期:
  • 在线发布日期: 2020-09-02
  • 出版日期:
关闭