三角阵列电极的太赫兹光电导天线结构设计
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(61964003)

伦理声明:



Structure design of a photoconductive antenna with triangular array electrodes
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    光电导天线具有室温操作、紧凑设计和宽带辐射等优点,但辐射功率低限制了其广泛应用,其中低光吸收率是辐射功率低的主要原因之一。传统的天线电极无尖端结构,边缘电场弱,导致了低的光吸收率。为了提高光电导天线的辐射功率,设计了一种三角阵列天线电极结构,该电极结构由5个三角形尖端排列组成。使用时域有限差分(FDTD)方法研究了800 nm飞秒激光照射下电极的电场增强和衬底对光的吸收。此结构增加了激光入射到衬底的面积,并且减小了光载流子传输距离,在无电场情况下光的吸收率达到30.57%,相对于传统天线提高了161%。三角阵列电极结构为传统电极结构设计提供了新思路,有望与纳米结构结合进一步提高辐射功率。

    Abstract:

    Photoconductive antenna has the advantages of room temperature operation, compact design and wide-band radiation, but its wide application is limited by low radiation power caused primarily by low optical absorptivity. The traditional antenna electrode has no tip structure and the edge electric field is weak, which leads to low light absorption. In order to improve the radiation power of photoconductive antenna, a triangular array antenna electrode structure is designed. The electrode structure is composed of five triangular tips. Finite Difference Time Domain(FDTD) method is adopted to study the electric field enhancement of the electrode and the light absorption of the substrate under 800 nm femtosecond laser irradiation. The results show that this structure increases the area of laser incidence on the substrate and reduces the optical carrier transmission distance. In the case of no electric field, the optical absorption reaches 30.57%, which is 161% higher than that of the traditional antenna. Triangular array electrode structure provides a new idea for the design of traditional electrode structure, which is expected to be combined with nanostructures to further improve the radiation power.

    参考文献
    相似文献
    引证文献
引用本文

刘乐福,刘林生,陆 叶,李传起.三角阵列电极的太赫兹光电导天线结构设计[J].太赫兹科学与电子信息学报,2021,19(6):968~972

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2021-05-27
  • 最后修改日期:2021-08-17
  • 录用日期:
  • 在线发布日期: 2021-12-31
  • 出版日期: