基于Focal-EIOU函数的被动式太赫兹图像违禁物品识别
作者:
作者单位:

中国铁路设计集团有限公司 电化电信院,天津 300308

作者简介:

周敏(1977-),男,天津市人,本科,高级工程师,主要研究方向铁路通信信息技术.email:zhoumin@crdc.com.

通讯作者:

基金项目:

中国铁路设计集团有限公司科技开发课题资助项目(2020YY240802)

伦理声明:



Detection of prohibited objects in passive terahertz images based on Focal-EIOU loss function
Author:
Ethical statement:

Affiliation:

Electrification & Telegraphy Engineering Design Research Department,China Railway Design Corporation,Tianjin 300308,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对被动式太赫兹安检系统因环境影响导致图像质量波动,从而影响识别算法,导致准确率大幅降低的问题,提出了基于Focal-EIOU损失函数的改进YOLOv4算法,并用被动式太赫兹人体安检图像对刀、枪违禁物品进行模型训练获得模型。建立不同环境、不同位置角度携带刀枪嫌疑物人员的太赫兹图像数据库,采用图像增广的方法构建丰富数据集;将YOLOv4的CIOU loss改进为Focal-EIOU loss,提高算法对太赫兹图像识别的鲁棒性,进而经过训练获得较优的模型。在本文的测试集中,使用改进后的算法训练的模型平均检测精确度(mAP)达到96.4%,检测速度在28 ms左右,交并比(IOU)平均值为0.95,在同等条件下高于常规算法,改善了检测识别的效果。实验结果表明,本文方法能够有效提高被动式太赫兹人体安检系统的嫌疑物识别准确率,有利于该项技术在人体安检领域的推广应用。

    Abstract:

    Aiming at the problem that the image quality fluctuation of passive terahertz security system is caused by environmental change, which affects the recognition algorithm and leads to a significant decrease in accuracy, this paper proposes an improved YOLOv4 algorithm based on Focal-Efficient Intersection Over Union(EIOU) loss function, and uses passive terahertz human security image to conduct model training for prohibited items of knife and gun. A terahertz image database of people carrying suspected objects in different environments and different positions is established, and a rich data set is constructed by image augmentation method. The Complete IOU(CIOU) loss of YOLOv4 is improved to Focal-EIOU loss to improve the robustness of the algorithm for terahertz image recognition, and then a better model is obtained after training. In the test set of this paper, since YOLOv4 algorithm has low robustness for terahertz image recognition accuracy, CIOU loss of YOLOv4 is modified and adjusted to Focal-EIOU loss, and a better model is finally obtained through training. The mean Average Precision(mAP) of the model trained by the improved algorithm reaches 96.4%, the detection speed is about 28 ms, and the average value of IOU is 0.95, which are higher than those of the conventional algorithms under the same conditions, the detection and recognition effect are improved. The experimental results show that the proposed method can effectively improve the suspect identification accuracy of passive terahertz human security system, which is conducive to the popularization and application of this technology in the field of human security.

    参考文献
    相似文献
    引证文献
引用本文

周敏.基于Focal-EIOU函数的被动式太赫兹图像违禁物品识别[J].太赫兹科学与电子信息学报,2022,20(8):810~816

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2021-07-02
  • 最后修改日期:2021-09-22
  • 录用日期:
  • 在线发布日期: 2022-08-23
  • 出版日期: