基于时序知识图谱的工业物联网设备故障态势预测
DOI:
作者:
作者单位:

1.国网江苏省电力有限公司信息通信分公司;2.国网江苏省电力有限公司泰州供电分公司;3.南京邮电大学通信与信息工程学院

作者简介:

通讯作者:

基金项目:

国网江苏省电力有限公司科技项目

伦理声明:



Fault situation prediction technology for industrial IoT equipment based on temporal knowledge graph
Author:
Ethical statement:

Affiliation:

1.Information and communication branch, State Grid Jiangsu Electric Power Co., LTD.;2.Taizhou power supply branch, State Grid Jiangsu Electric Power Co., LTD.;3.School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications

Funding:

Science and technology project of State Grid Jiangsu Electric Power Co., LTD.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着工业物联网的发展,工业系统日益复杂,工业设备运维数据日益庞大,对工业设备进行态势预测显得尤为重要。知识图谱被证明其在处理大量异构数据方面具有显著优势,可以被应用于工业物联网设备运维数据的处理。针对工业设备运行故障态势预测这一时序逻辑问题,本文提出一种时序知识图谱推理表示学习模型,该模型使用局部递归图编码器网络对相邻时间点处的事件的历史依赖性进行建模,并使用全局历史编码器网络来收集重复的历史事实。实验表明,所提出的模型在平均倒数排名(Mean Reciprocal Rank, MRR)等指标中优于基线推理方法。

    Abstract:

    With the development of industrial IoT, industrial systems are becoming more and more complex, and industrial equipment operation and maintenance data are becoming increasingly large, so it is particularly important to predict the posture of industrial equipment. Knowledge graph has been proved to have significant advantages in dealing with a large amount of heterogeneous data, and can be applied to the processing of industrial IoT equipment operation and maintenance data. Aiming at the temporal logic problem of predicting the failure posture of industrial equipment operation, this paper proposes a temporal knowledge graph inference representation learning model that uses a local recursive graph encoder network to model the historical dependencies of events at adjacent time points and a global history encoder network to collect repeated historical facts. Experiments show that the proposed model outperforms baseline inference methods in metrics such as mean reversal ranking (MRR).

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2023-11-06
  • 最后修改日期:2024-05-08
  • 录用日期:2024-05-09
  • 在线发布日期:
  • 出版日期:
关闭