基于数据增强算法和CNN-LSTM的高精确度手势识别
作者:
作者单位:

中国信息通信研究院,北京 100191

作者简介:

唐高鹏(1999-),男,硕士,工程师,主要研究方向为智能电磁感知.email:tgp1072564908@163.com.
李从胜(1987-),男,博士,高级工程师,主要研究方向为智能电磁感知、计算电磁学.
巫彤宁(1977-),男,博士,教授级高级工程师,主要研究方向为生物电磁学.

通讯作者:

基金项目:

国家自然科学基金资助项目(61971445)

伦理声明:



High-precision gesture recognition based on data enhancement algorithm and CNN-LSTM
Author:
Ethical statement:

Affiliation:

China Academy of Information and Communications Technology,Beijing 100191,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近年来,基于雷达的手势识别技术在工业和生活中得到了广泛应用,但愈加复杂的应用场景对手势识别算法的准确率和鲁棒性提出了更高要求。对此,设计了一种基于毫米波雷达的高精确度手势识别算法。通过对已有分类算法的研究对比,构建了一种用于手势识别的卷积神经网络-长短期记忆网络(CNN-LSTM)深度学习算法模型;同时,运用布莱克曼窗抑制手势信号处理中的频谱泄露问题,并联合运用小波阈值和动态补零算法实现高效杂波抑制和数据增强。实测结果表明,设计的手势识别算法正确分类率达到97.29%,在不同的距离和角度情况下也可以保持较好的识别准确率,具有良好的鲁棒性。

    Abstract:

    In recent years, radar-based gesture recognition technology has been widely used in industry and life, and more complex application scenarios also put forward higher requirements on the accuracy and robustness of gesture recognition algorithms. A high-precision gesture recognition algorithm based on millimeter-wave radar is desgined. By comparing the existing classification algorithms, a Convolutional Neural Network-Long Short Term Memory(CNN-LSTM) deep learning algorithm model is constructed for gesture recognition. At the same time, the Blackman window is employed to suppress the problem of spectrum leakage in gesture signal processing, and efficient clutter suppression and data enhancement is achieved through the combining of wavelet threshold and dynamic zero-padding algorithm. The actual measurement results show that the proposed gesture recognition algorithm achieves a correct classification rate of 97.29%, and can maintain a good recognition accuracy rate under different distances and angles with very good robustness.

    参考文献
    相似文献
    引证文献
引用本文

唐高鹏,李从胜,巫彤宁.基于数据增强算法和CNN-LSTM的高精确度手势识别[J].太赫兹科学与电子信息学报,2024,22(5):549~557

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2022-04-28
  • 最后修改日期:2022-07-04
  • 录用日期:
  • 在线发布日期: 2024-06-03
  • 出版日期: