基于强化学习的分布式协同干扰决策算法
DOI:
作者:
作者单位:

哈尔滨工程大学 信息与通信工程学院

作者简介:

通讯作者:

基金项目:

边境复杂电磁环境多维度专用隐蔽通信与干扰抑制理论与方法

伦理声明:



A distributed interference decision algorithm based on reinforcement learning
Author:
Ethical statement:

Affiliation:

Harbin Engineering University College of Information And Communication Engineering

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在战场通信对抗中,干扰参数的合理分配一直是一项具有挑战性的任务。本文基于强化学习对干扰方的干扰功率、干扰波形和干扰目标进行分配,在保证干扰效果的前提下,以节省资源消耗,提高资源的利用率。具体地,将干扰参数分配问题构建为完全协作的多智能体任务,采用集中式训练、分布式决策的SA-QMIX算法缓解多智能体决策维度高的问题,通过在QMIX算法中引入最大熵方法和多头注意力机制,使智能体在部分可观测环境下更有效地协同决策。仿真结果表明,本文所采用的SA-QMIX算法进行干扰参数分配时相比传统的QMIX算法能够在减少1.5dbm的干扰功率前提下,增加5%的干扰成功率,并且算法的收敛速度更快。

    Abstract:

    In the battlefield communication confrontation, the reasonable distribution of interference parameters has always been a challenging task. This article is allocated based on strengthening the interference power, interference waveform and interference target of the interference party. Under the premise of ensuring the interference effect, it saves resource consumption and improves the utilization rate of resources. Specifically, the interference parameter distribution problem is constructed as a multi-smart task with complete collaboration, and the SA-QMIX algorithm with centralized training and distributed decisions can be used Introduce the maximum entropy method and MHA to make the smart parts more effective in some observation environments. The simulation results show that the SA-QMIX algorithm used in this article is compared to the traditional QMIX algorithm when the interference parameter distribution can increase the interference success rate by 5% by reducing the interference power of 1.5 dBm, and the convergence of the algorithm is faster.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2024-01-29
  • 最后修改日期:2024-03-02
  • 录用日期:2024-03-04
  • 在线发布日期:
  • 出版日期:
关闭