面向有源配电台区电力设备的太赫兹指纹识别学习方法
作者:
作者单位:

国网天津市电力公司 电力科学研究院,天津 300074

作者简介:

岳洋(1990-),男,硕士,工程师,主要研究方向为智能配电网技术.email:yang.yue@tj.sgcc.com.cn.
张磐(1983-),男,硕士,正高级工程师,主要研究方向为配电自动化、智能配用电技术.
吴磊(1985-),男,高级工程师,主要研究方向为智能配电网和继电保护技术.
庞超(1995-),男,硕士,工程师,主要研究方向为智能配用电技术研究.

通讯作者:

基金项目:

国网天津市电力公司科技资助项目(电科-研发 2023-41)

伦理声明:



A terahertz fingerprint recognition learning method for power equipment in active distribution substations
Author:
Ethical statement:

Affiliation:

Electric Power Research Institute,State Grid Tianjin Electric Power Company,Tianjin 300074,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为提升对有源台区内海量分布式电力设备的安全管理能力,提出一种面向有源台区的电力设备太赫兹指纹识别防篡改与分簇联邦学习协同方法。首先通过特殊的工艺制作电力设备太赫兹标签,提供物理防伪基础;进而提出一种双分支多模态卷积神经网络识别设备指纹是否存在异常篡改;最后设计了一种分簇联邦学习(FL)训练方法,避免因隐私问题导致的防篡改识别模型的数据难以共享共用,并实现有源台区内多设备太赫兹指纹数据的分布式联合建模与高效协同训练。实验结果表明,本文所提方法的指纹识别精确度达到90%以上,比传统直方图相似度算法识别精确度提升了212%。本文所提方法在提高设备指纹识别精确度、增加训练效率和数据可用不可见等方面均具有显著优势,为电力设备的安全监测及预防攻击提供了新的技术路径。

    Abstract:

    A terahertz fingerprint recognition and clustered Federated Learning(FL) collaboration method is proposed for anti-tampering protection of power equipment in power-supplied distribution areas, aiming to enhance the security management of massive distributed power devices within such areas. Firstly, specialized manufacturing techniques are employed to create terahertz tags for power equipment, providing a foundation for physical anti-counterfeiting. Then, a dual-branch multimodal convolutional neural network is introduced to detect abnormal tampering of device fingerprints. Finally, a clustered FL training method is designed to address data-sharing challenges caused by privacy concerns in anti-tampering recognition models, enabling distributed joint modeling and efficient collaborative training of terahertz fingerprint data across multiple devices in power-supplied distribution areas. Experimental results demonstrate that compared with traditional methods, the proposed approach improves recognition accuracy by 212% over the histogram similarity algorithm. Additionally, it significantly outperforms conventional image recognition algorithms in terms of fingerprint recognition accuracy, training efficiency, and ensuring data usability while maintaining privacy. Finally, the fingerprint recognition accuracy reaches more than 90%, which provides a novel technical pathway for security monitoring and attack prevention of power equipment.

    参考文献
    相似文献
    引证文献
引用本文

岳洋,张磐,吴磊,庞超.面向有源配电台区电力设备的太赫兹指纹识别学习方法[J].太赫兹科学与电子信息学报,2025,23(7):655~662

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2025-02-08
  • 最后修改日期:2025-04-09
  • 录用日期:
  • 在线发布日期: 2025-08-01
  • 出版日期:
关闭