基于多维能耗数据的用能行为聚类分析及数据降维方法
作者:
作者单位:

1.国网天津市电力公司 经济技术研究院,天津 300171;2.国网天津市电力公司,天津 300010

作者简介:

罗 帅(1991-),男,博士,高级工程师,主要研究方向为能源经济、能源大数据、电力供需.email:shuai-luo@ outlook.com.
王 洋(1989-),男,硕士,高级工程师,主要研究方向为能源大数据、双碳.
项添春(1979-),男,硕士,教授级高级工程师,主要研究方向为能源大数据、新型电力系统.
周 进(1979-),女,硕士,高级工程师,主要研究方向为能源发展规划、电力发展规划.
李 娜(1985-),女,硕士,正高级经济师,主要研究方向为电力经济、能源发展.
张 来(1983-),男,硕士,高级工程师,主要研究方向为新型电力系统.

通讯作者:

基金项目:

国网天津市电力公司科技项目资助(经研-研发 2024-02)

伦理声明:



Cluster analysis of energy use behavior based on multidimensional energy consumption data and data dimensionality reduction methods
Author:
Ethical statement:

Affiliation:

1.Research Institute of Economy and Technology,State Grid Tianjin Electric Power Company,Tianjin 300171,China;2.State Grid Tianjin Power Company,Tianjin 300010,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    长期的能耗数据记录和分析有助于发现能源消耗的趋势和规律,为制定碳减排策略提供重要参考。重点碳排放监测用户的能耗数据涉及多种类型,不仅要对用户的能耗数据聚类进行分析,还需研究更加精确的聚类结果可视化方法。对此,本文提出一种基于Tent混沌序列灰狼优化的模糊C-均值算法(TGWO-FCM),对用户的能耗数据进行分析。将用户能耗数据的聚类中心看作灰狼个体进行寻优,解决FCM算法对初始聚类中心位置敏感、容易陷入局部最优的缺点;采用均匀流形逼近与投影(UMAP)的数据降维方法降低能耗数据的复杂度,将高维能耗数据映射到二维或三维空间中,从而实现对数据的直观可视化。实验结果表明,本文方法可将具有相似能耗模式的用户归为同一类别,不仅揭示了用户间的能耗模式差异,还为制定针对性的节能减排政策提供了科学依据。

    Abstract:

    Long-term energy consumption data recording and analysis help to identify the trends and patterns of energy consumption, providing important references for formulating carbon reduction strategies. The energy consumption data of key carbon emission monitoring users involves various types. It is not only necessary to conduct clustering analysis on the users' energy consumption data, but also to study more precise clustering result visualization methods. To this end, a Fuzzy C-Means algorithm based on Tent Chaotic Sequence Grey Wolf Optimization(TGWO-FCM) is proposed to analyze the users' energy consumption data. The clustering centers of users' energy consumption data are regarded as grey wolf individuals for optimization, which solves the shortcomings of the FCM algorithm being sensitive to the initial clustering center positions and easily falling into local optimum. The data dimensionality reduction method of Uniform Manifold Approximation Projection(UMAP) is adopted to reduce the complexity of energy consumption data, mapping high-dimensional energy consumption data to two-dimensional or three-dimensional spaces to achieve intuitive visualization of the data. Experimental results show that the method proposed in this paper can classify users with similar energy consumption patterns into the same category, not only revealing the differences in energy consumption patterns among users, but also providing a scientific basis for formulating targeted energy-saving and emission-reduction policies.

    参考文献
    相似文献
    引证文献
引用本文

罗帅,王洋,项添春,周进,李娜,张来.基于多维能耗数据的用能行为聚类分析及数据降维方法[J].太赫兹科学与电子信息学报,2025,23(7):692~698

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2024-11-15
  • 最后修改日期:2024-12-06
  • 录用日期:
  • 在线发布日期: 2025-08-01
  • 出版日期:
关闭