基于特征融合与目标检测的电磁信号识别机制
作者:
作者单位:

1.中国电子科技集团公司第二十二研究所,山东 青岛 266107;2.北京理工大学 信息与电子学院,北京 100081;3.中电科(青岛)电波技术有限公司,山东 青岛 266107

作者简介:

冯阳(1992-),女,硕士,工程师,主要研究方向为信号识别.email:fengyang_hit@163.com.
郭兰图(1982-),男,硕士,研究员,主要研究方向为频谱管理、复杂电磁环境建模.
吴嘉明(2000-),男,在读硕士研究生,主要研究方向为辐射源识别.
叶飞扬(2001-),男,学士,主要研究方向为辐射源识别.
张万成(1982-),男,博士,讲师,主要研究方向为语音信号处理.
郭琛(1993-),男,硕士,工程师,主要研究方向为信号识别.

通讯作者:

吴嘉明 email:1179276865@qq.com

基金项目:

国家重点研发计划资助项目(2022YFC3301400);青岛市科技惠民示范专项资助项目(23-3-8-cspz-1-nsh)

伦理声明:



Electromagnetic signal recognition mechanism based on feature fusion and intelligent object detection
Author:
Ethical statement:

Affiliation:

1.The 22nd Research Institute of China Electronic Technology Group Corporation,Qingdao Shandong 266107,China;2.School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China;3.CETC(Qingdao) Radio Technology Co.,Ltd,Qingdao Shandong 266107,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着各种通信、导航、遥控设备的广泛使用,电磁环境变得愈发复杂。在多类信号混杂的电磁环境中对电磁频谱进行监测布控,实现针对非授权、非合作设备的准确识别成为迫切需求。近年来,基于深度学习的识别技术得到快速发展,但在多域特征融合机制方面仍有所欠缺,在非合作条件下识别性能仍相对较弱。针对多信号混杂情境下特定电磁目标信号识别问题,提出一种基于多域特征融合与目标检测架构的电磁信号识别方法。该方法利用短时傅里叶变换实现了时频域信号特征的融合,基于YOLO目标检测架构,设计了时频域联合特征提取识别机制。算法在实测数据和公开数据集上进行性能验证,实验结果表明本算法的识别准确率明显优于对比深度学习识别方法。

    Abstract:

    With the widespread use of various communication, navigation, and remote control devices, the electromagnetic environment has become increasingly complex. Monitoring and controlling the electromagnetic spectrum in a cluttered electromagnetic environment, and accurately identifying unauthorized and non-cooperative devices, has become an urgent need. In recent years, identification technologies based on deep learning have developed rapidly, but there is still a lack in the mechanism of multi-domain feature fusion, and the identification performance under non-cooperative conditions is still relatively weak. In response to the problem of identifying specific electromagnetic target signals in situations with mixed signals, a method for electromagnetic signal identification based on multi-domain feature fusion and target detection architecture is proposed. This method utilizes short-time Fourier transform to achieve the fusion of signal features in the time-frequency domain, and based on the YOLO target detection architecture, a joint feature extraction and recognition mechanism in the time-frequency domain is designed. The algorithm is validated for performance on real-world data and public datasets, and the experimental results show that the recognition accuracy of this algorithm is significantly higher than that of comparative deep learning identification methods.

    参考文献
    相似文献
    引证文献
引用本文

冯阳,郭兰图,吴嘉明,叶飞扬,张万成,郭琛.基于特征融合与目标检测的电磁信号识别机制[J].太赫兹科学与电子信息学报,2025,23(7):755~762

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2024-01-29
  • 最后修改日期:2024-03-12
  • 录用日期:
  • 在线发布日期: 2025-08-01
  • 出版日期:
关闭