基于改进DnCNN的高频地波雷达海洋回波谱去噪方法
作者:
作者单位:

武汉大学 电子信息学院,湖北 武汉 430072

作者简介:

王 珽(1999-),女,硕士,主要研究方向为高频地波雷达信号处理.email: 2017301200381@whu.edu.cn.
赵 晨(1985-),男,博士,副教授,博士生导师,主要研究方向为无线电海洋探测.
陈泽宗(1966-),男,博士,教授,博士生导师,主要研究方向为无线电海洋环境探测.
吴思滔(1994-),男,博士,主要研究方向为船载相干微波雷达探海.

通讯作者:

基金项目:

国家自然科学基金面上资助项目

伦理声明:



Denoising method of High-Frequency Surface Wave Radar ocean echo spectrum based on improved DnCNN
Author:
Ethical statement:

Affiliation:

School of Electronic Information,Wuhan University,Wuhan Hubei 430072,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    高频地波雷达(HFSWR)工作波段的电磁环境极其复杂,包含无线电干扰、海杂波和电离层杂波在内的噪声会严重影响船只目标识别准确度。为解决这个问题,本文提出一种改进的前馈去噪卷积神经网络(DnCNN)抑制HFSWR海洋回波信号中的噪声。根据HFSWR海洋回波信号中噪声的特点,从图像块(patch)大小、卷积核大小、网络深度等方面对原始DnCNN进行修改,使其适合HFSWR去噪任务。基于HFSWR海试数据生成了包含10 000对距离-多普勒(RD)谱的数据集,并将其平均划分为训练集和测试集。对测试集中3组RD谱(分别以海杂波、射频干扰和电离层杂波为主要噪声)的去噪结果分析表明,改进DnCNN模型在噪声抑制和船只目标信号幅度方面保持性能上均显著优于原始DnCNN。此外,对整个测试集的统计结果显示,改进DnCNN去噪指标峰值信噪比平均为44.13 dB,显著高于原始DnCNN的35.58 dB。综上所述,改进DnCNN在抑制HFSWR海洋回波噪声的同时很好地保持了船只目标信号的幅值。

    Abstract:

    The electromagnetic environment of the working frequency band of High-Frequency Surface Wave Radar(HFSWR) is extremely complex. Noise, including radio frequency interference, sea clutter, and ionospheric clutter, can severely affect the accuracy of ship target identification. To address this issue, an improved feedforward Denoising Convolutional Neural Network(DnCNN) is proposed to suppress the noise in HFSWR marine echo signals. Based on the characteristics of the noise in HFSWR marine echo signals, the original DnCNN is modified in terms of patch size, convolutional kernel size, and network depth to make it suitable for the HFSWR denoising task. A dataset containing 10 000 pairs of Range-Doppler(RD) spectra is generated based on HFSWR sea trial data and is evenly divided into training and testing sets. Analysis of the denoising results of three groups of RD spectra in the testing set(with sea clutter, radio frequency interference, and ionospheric clutter as the main noise sources, respectively) shows that the improved DnCNN model significantly outperforms the original DnCNN in both noise suppression and maintaining the amplitude of ship target signals. Moreover,statistical results of the entire testing set indicate that the Peak Signal-to-Noise Ratio(PSNR) of the improved DnCNN denoising metric is 44.13 dB on average, which is significantly higher than the 35.58 dB of the original DnCNN. In summary, the improved DnCNN effectively suppresses the noise in HFSWR marine echoes while well preserving the amplitude of ship target signals.

    参考文献
    相似文献
    引证文献
引用本文

王珽,赵晨,陈泽宗,吴思滔.基于改进DnCNN的高频地波雷达海洋回波谱去噪方法[J].太赫兹科学与电子信息学报,2025,23(8):855~862

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2024-01-18
  • 最后修改日期:2024-02-28
  • 录用日期:
  • 在线发布日期: 2025-09-01
  • 出版日期:
关闭