基于红外成像及SVM的过压保护设备故障自动化识别方法
作者:
作者单位:

国网新疆电力有限公司 昌吉供电公司,新疆 昌吉831100

作者简介:

简家礼(1982-),男,学士,高级工程师,主要研究方向为配电网技术、配网带电作业、配电自动化和智能配电网等.email:18524743@qq.com.
王英(1982-),女,学士,高级工程师,主要研究方向为电网调度、调度自动化、继电保护、运行方式等.

通讯作者:

基金项目:

伦理声明:



Automatic fault identification method of overvoltage protection equipment based on infrared imaging and SVM
Author:
Ethical statement:

Affiliation:

State Grid Changji Electric Power Supply Company,Changji Xinjiang 831100,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对不同水平噪声下过压保护设备故障难以识别,故障细节信息与设备颜色信息难以区分的问题,研究了基于红外成像及支持向量机(SVM)的过压保护设备故障自动化识别方法。使用红外成像技术,生成过压保护设备红外热图像,采用基于多尺度Retinex的过压保护设备红外热图像增强方法;运用基于小波变换的过压保护设备故障特征提取方法,获得过压保护设备故障特征;利用二叉树算法优化SVM得到SVM二叉树分类模型,通过模型训练与求解实现过压保护设备故障自动化识别。实验结果表明:增强后的过压保护设备图像的细节信息与颜色信息保持较好,峰值信噪比增加50 dB以上;提取的过压保护设备故障特征具有良好的可分性;不同水平噪声下的过压保护设备故障自动化识别匹配度始终高于96%,可准确识别过压保护设备故障。

    Abstract:

    Aiming at the problem that the failures of overvoltage protection device are difficult to identify under different levels of noise, and that failure details and device color information are hard to distinguish, a method for automated recognition of the failures of overvoltage protection device based on infrared imaging and Support Vector Machine(SVM) has been studied. Infrared imaging technology is employed to generate infrared thermal images of the overvoltage protection devices. An infrared thermal image enhancement method based on multi-scale Retinex is employed to improve the images. A fault feature extraction method based on wavelet transform is adopted to obtain the fault features of the overvoltage protection devices. A binary tree algorithm is applied to optimize the SVM, resulting in an SVM binary tree classification model. Automated recognition of the failures of overvoltage protection device is achieved through model training and solving. Experimental results show that the enhanced infrared thermal images of the overvoltage protection devices retain good detail and color information, with a Peak Signal-to-Noise Ratio(PSNR) increased by more than 50 dB. The extracted fault features of the overvoltage protection devices have good separability. The automated recognition match rate of the failures of overvoltage protection device under different noise levels remains above 96%, allowing for accurate identification of the failures.

    参考文献
    相似文献
    引证文献
引用本文

简家礼,王英.基于红外成像及SVM的过压保护设备故障自动化识别方法[J].太赫兹科学与电子信息学报,2025,23(8):876~882

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2023-09-21
  • 最后修改日期:2024-04-08
  • 录用日期:
  • 在线发布日期: 2025-09-01
  • 出版日期:
关闭