摘要
石墨烯由于高迁移率、高导热性、柔韧性好和机械强度高等优异性能使其成为构筑新型纳米电子器件的重要材料,已成为电子信息、生物医学、显示等领域的研究热点。当石墨烯材料及其电子器件放置于含有辐照因素的场景中时,会因为与高能光子和带电粒子等相互作用而改变晶格结构或积累电荷,使石墨烯材料及电子器件的性能发生变化。本文主要综述了典型辐照因素对石墨烯及器件的主要效应及研究进展,旨在总结不同辐照在石墨烯及其电子器件中引发的物理效应,归纳其微观-宏观性质变化,为加深石墨烯材料及器件的辐照效应的理解,推动其在辐照场景中的实际应用奠定基础。
随着微纳电子技术的不断发展,硅基器件的工艺和设计已接近摩尔极限,研究人员不断寻找可以辅助硅基发展的新材料。2004年英国曼切斯特大学的科学家NOVOSELOV K S,GEIM A K使用机械解理的方式从石墨中分离出石墨
实际应用中,如航空航天、核能动力、医学影像、高能物理等场景常常存在各种辐照因素,会对电子器件性能产生不可忽略的影响,如缺陷积累使器件性能退化、单粒子效应造成的器件逻辑错
石墨烯是从石墨上剥离的具有一个碳原子厚度的材

图1 单层石墨烯的结构
Fig.1 Structure of monolayer graphene

图2 石墨烯的三维能带结构
Fig.2 The three-dimensional energy band structure of graphene
常见的辐照因素主要来自空间环境、高能物理实验、核环境、天然环境以及工艺加工环境等。空间环境主要为带电粒子、范·艾伦带中捕获的质子及电子、地磁层中捕获的重离子、宇宙射线中的质子及重离子和太阳耀斑产生的质子及重离子。高能物理实验中π介子相互碰撞产生高通量带电粒子、γ射线及中子;核环境主要是核反应产生的γ射线、中子
高能光子主要是X射线和γ射线,对石墨烯的损伤以电离损伤为主。高能光子通过与物质相互作用产生次级电子,次级电子引起物质的原子发生电离和激

图3 高能光子同靶材料3种相互作用(实线对应于邻近效应的相等作用截面;虚线代表碳的情形(Z=6))
Fig.3 Illustration of the relative importance of the three kinds of photon interaction with the target material (solid lines correspond to equivalent interaction cross sections for proximity effects; dashed lines represent the case of carbon (Z=6))

图4 高能光子与固体物质相互作用3种效应
Fig.4 Three kinds of effect of photon interaction with solid matter
高能光子与固体物质相互作用包括瞬态(如单粒子效应和剂量率效应)和稳态(总剂量效应)。目前报道的高能光子与石墨烯相互作用主要是总剂量效应,基本过程为:当高能光子辐照时,会将空气中的水分子分解,形成的H原子与O原子吸附在石墨烯表面,辐照时的温度可使H,O原子发生降解,从而形成空穴缺陷。2011年ZHANG E X用10 keV射线辐照SiO2上的石墨烯,总剂量为50~300 krad,拉曼测试结果显示,随着总剂量的增大,D峰逐渐增

图5 通过H原子的相互作用和空位的形成减少O原子覆盖率
Fig.5 Oxygen coverage reduction through H interaction and vacancy formation
质子和重离子都属于带电粒子,其中质子为带1个单位正电荷、质量数为1的

图6 使用DFT计算得到的原子结构
Fig.6 Atomic structure obtained from DFT calculations

图7 吸附原子-空位对模型为M1(SV或5-9),M1(5-8-5)和M2(5-8-5)。正常的C原子显示为灰色球体,缺陷区域显示为黄色球体,吸附原子显示为蓝色球体
Fig.7 The adatom-vacancy pair models are M1(SV or 5-9), M1(5-8--5), and M2(5-8-5). Normal C atoms are shown as gray spheres, defect region as yellow spheres, and adatoms as blue spheres, respectively
2012年ZHAO S等采用分子动力学的方法模拟了A

图8 (a)模拟离子辐照基底支撑的石墨烯,冰蓝色、红色和黄色的球分别代表C、O和Si原子。入射离子用石墨烯上方的粉红色球体表示。(b)~(d)是能量为10 keV的氩离子辐照在有支撑的石墨烯时,损伤产生的过程:(b)入射的氩原子穿透石墨烯和几层二氧化硅;(c)入射的氩原子诱导衬底的原子溅射进一步在石墨烯中产生缺陷;(d)最终产生的缺陷结构,在石墨烯中可以看到一个压力波
Fig.8 (a) Illustration of the simulation setup for irradiation of graphene supported by the substrate (The iceblue, red and yellow balls represent the C, O and Si atoms, respectively. The incident ion is denoted by a pink sphere above the graphene); (b)~(d) several snapshots of the damage production process when Ar with an energy of 10 keV irradiates the graphene supported on a substrate:(b) The incident Ar penetrates the graphene and several layers of ; (c) The sputtered atoms from the substrate induced by the incident Ar further generate defects in graphene; (d) The final resulting defect configuration. A pressure wave can be seen in the graphene.
质子对石墨烯的影响最早由Ko G等在2010年开展了研究,他们发现能量为5 MeV、剂量为1.5×1
2015年,WANG Q等使用聚焦离子束系统产生G

图9 随着停留时间的增加,拉曼光谱的叠加
Fig.9 Overlay of Raman spectra following irradiation with increasing dwell time

图10 Id/Ig比值与辐照时间的关系
Fig.10 Id/Ig as a function of dwell time
利用石墨烯的优异电学性能可以构成各类电子器件,如石墨烯场效应管(Graphene Field Effect Transistor,GFET)、光电探测

图11 石墨烯场效应晶体管示意图
Fig.11 Schematic diagram of a graphene field effect transistor

图12 (a)当Ug<0时,p分支的能带图;(b)当Ug>0时,n分支的能带图
Fig.12 (a) Band diagram of p-branch when Ug<0; (b) the band diagram of n-branch when Ug>0
高能光子对GFET的辐照效应报道目前主要集中于总剂量效应,GFET可以通过顶栅或背栅等不同的栅极结构实现控制,栅位置不同,器件对辐照的响应也不同。2014年,FRANCIS S A等研究了10 keV(总剂量可达1 Mrad和2 Mrad)的X射线与SiO2衬底的背栅GFET的相互作

图13 X-ray辐照背栅石墨烯场效应管前后Id与Ug的关系变化
Fig.13 Changes in Id and Ug between X-ray irradiation back-gate GFET

图14 γ辐照顶栅石墨烯场效应管过程中狄拉克电压的变化
Fig.14 Changes in Dirac voltage during γ irradiation top-gate GFET
带电粒子对石墨烯场效应晶体管的辐照效应主要体现为石墨烯的碳环被打断,悬浮碳键的数量增加并吸附空气中的杂质成为电荷陷阱,且悬空的碳键还会与环境的气体及水分子发生氧化反应,使缺陷增加,形成褶皱和气泡,导致载流子迁移率减
2010年,ZHOU Y

图15 转移特性曲线
Fig.15 Transfer characteristic curves
随着石墨烯材料与器件技术成熟度越来越高,应用场景越来越广泛,国内外对其辐照效应研究的重视程度日益提高。因此,本文主要综述了国内外在石墨烯及石墨烯场效应管受高能光子和带电粒子两种典型辐照因素作用的研究进展,归纳了不同辐照下石墨烯材料、器件的微观-宏观性质变化。总体而言,石墨烯材料的辐照效应主要表现为:带电粒子可以使石墨烯的晶格C原子发生位移,形成不同类型的缺陷并随着辐照剂量的增大缺陷聚结,缺陷对空气中杂质的吸附使石墨烯形成重P型掺杂,表面可能会产生小山丘状的突起;高能光子对石墨烯的辐照以康普顿效应为主,其溅射产生的电子具有较高的动能,使石墨烯中形成间隙原子和其他缺陷,同时高能光子还会使空气中的水分子发生分解,形成的H原子与O原子吸附在石墨烯表面,辐照时的温度可以使H原子和O原子发生解吸附,从而形成空穴缺陷,降低石墨烯的迁移率以及导电性。石墨烯场效应管由于电极结构以及衬底等工艺因素的影响,其辐照效应与材料层次的差异主要为:高能光子入射石墨烯场效应管后,能量在衬底中沉积产生电子空穴对,电子空穴对会改变石墨烯局部电场,使部分区域无序化且石墨烯由晶体向非晶化转变,顶栅器件氧化层对空穴的束缚使石墨烯N型掺杂,狄拉克点向负栅压移动,但背栅氧化层在石墨烯下方,石墨烯对空气杂质的吸附与解吸使其形成P型掺杂,狄拉克点向正压移动。带电粒子对石墨烯场效应管辐照会引起栅氧层原子溅射,使得有支撑石墨烯的损伤比不考虑衬底因素时大,氧化层表面形成的电荷陷阱增强对杂质的吸附和解吸带来迟滞效应的增强,同时石墨烯晶格结构的变化会改变载流子迁移率、器件的灵敏度等。
尽管石墨烯及场效应管的辐照效应研究得到了与日俱增的重视,但与硅等半导体材料及其器件相比,相关工作仍非常欠缺,表现为:a) 不同种类的辐照效应研究不够完善,目前以带电粒子的位移损伤效应、电离损伤中以高能光子的总剂量效应为主,但对电离辐照中的单粒子效应、剂量率效应和非电离辐照中的中子位移损伤效应等的作用机理研究仍鲜有开展(如中子对石墨烯器件的辐照影响,目前仅有石墨烯霍尔传感器的辐照效应研
参考文献
NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669. [百度学术]
LEMME M C,ECHTERMEYER T J,BAUS M,et al. A graphene field-effect device[J]. IEEE Electron Device Letters, 2007,28(4):282-284. [百度学术]
KOGA R,PINKERTON S D,MOSS S C,et al. Observation of single event upsets in analog microcircuits[J]. IEEE Transactions on Nuclear Science, 1993,40(6):1838-1844. [百度学术]
ISLAM M R,HAQUE M A,FAHIM-AL-FATTAH M,et al. Dynamic performance of graphene field effect transistor with contact resistance[C]// 2016 5th International Conference on Informatics,Electronics and Vision(ICIEV). Dhaka,Bangladesh:IEEE, 2016:21-25. [百度学术]
GEIM A K,GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature, 2013,499(7459):419-425. [百度学术]
NETO A H C,GUINEA F,PERES N M R,et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009,81(1):109. [百度学术]
GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007(6):183-191. [百度学术]
李绍娟,甘胜,沐浩然,等. 石墨烯光电子器件的应用研究进展[J]. 新型炭材料, 2014,29(5):329-356. [百度学术]
LI Shaojuan,GAN Sheng,MU Haoran,et al. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials, 2014,29(5):329-356. [百度学术]
SUN J,SCHMIDT M E,MURUGANATHAN M,et al. Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates[J]. Nanoscale, 2016,8(12):6659-6665. [百度学术]
聂小如. 基于石墨烯材料的光开关和路由器件的研究[D]. 合肥:合肥工业大学, 2019. [百度学术]
NIE Xiaoru. The researches of graphene based optical switches and routing devices[D]. Hefei,China:Hefei University of Technology, 2019. [百度学术]
苏娟,成彬彬,邓贤进. 基于石墨烯的太赫兹光电功能器件研究进展[J]. 太赫兹科学与电子信息学报, 2015,13(3):511-519. [百度学术]
SU Juan,CHENG Binbin,DENG Xianjin. Recent progress on graphene-based terahertz optoelectronics[J]. Journal of Terahertz Science and Electronic Information Technology, 2015,13(3):511-519. [百度学术]
卢琪,吕宏鸣,伍晓明,等. 石墨烯射频器件研究进展[J]. 物理学报, 2017,66(16):223-235. [百度学术]
LU Qi,LYU Hongming,WU Xiaoming,et al. Research progress of graphene radio frequency device[J]. Acta Physica Sinica, 2017,66(16):223-235. [百度学术]
吴培培,付永启,杨俊. 基于表面等离激元的石墨烯光电探测器研究进展[J]. 激光与光电子学进展, 2021,58(7):25-37. [百度学术]
WU Peipei,FU Yongqi,YANG Jun. Graphene photodetectors based on surface plasmons[J]. Laser and Optoelectronics Progress, 2021,58(7):25-37. [百度学术]
冯伟,张戎,曹俊诚. 基于石墨烯的太赫兹器件研究进展[J]. 物理学报, 2015,64(22):22950-1-9. [百度学术]
FENG Wei,ZHANG Rong, CAO Juncheng. Progress of terahertz devices based on graphene[J]. Acta Physica Sinica, 2015,64(22):229501-1-9. [百度学术]
CLAEYS C,SIMOEN E. Radiation effects of advanced semiconductor materials and devices[M]. [S.l.]:Springer, 2008. [百度学术]
答元. MOS器件电离损伤的蒙特卡罗模拟研究[D]. 西安:西安工业大学, 2011. [百度学术]
DA Yuan. Study of Monte Carlo simulation of the ionization damage of MOS device[D]. Xi’an,China:Xi’an Technological University, 2011. [百度学术]
VAN-LINT V A J,FLANAGAN T M,LEADON R E,et al. Mechanisms of radiation effects in electronic materials. Volume 1[J]. New York:Wiley-Interscience, 1980. [百度学术]
刘恩科. 半导体物理学[M]. 北京:国防工业出版社, 1994:43. [百度学术]
LIU Enke. Semiconductor physics[M]. Beijing:National Defense Industry Press, 1994:43. [百度学术]
陈世彬,张义门,陈雨生,等. 质子和1 MeV中子在硅中能量沉积的模拟计算[J]. 高能物理与核物理, 2001,25(4):365-370. [百度学术]
CHEN Shibin,ZHANG Yimen,CHEN Yusheng,et al. Simulation of energy deposition of protons and 1 MeV neutrons in silicon[J]. High Energy Physics and Nuclear Physics, 2001,25(4):365-370. [百度学术]
ZHANG E X,NEWAZ A K M,WANG B,et al. Low-energy X-ray and ozone-exposure induced defect formation in graphene materials and devices[J]. IEEE Transactions on Nuclear Science, 2011,58(6):2961-2967. [百度学术]
PUZYREV Y S,WANG B,ZHANG E X,et al. Surface reactions and defect formation in irradiated graphene devices[J]. IEEE Transactions on Nuclear Science, 2012,59(6):3039-3044. [百度学术]
ECKMANN A,FELTEN A,MISHCHENKO A,et al. Probing the nature of defects in graphene by Raman spectroscopy[J]. Nano Letters, 2012,12(8):3925-3930. [百度学术]
WU J Q,ZHANG Y,WANG B,et al. Effects of X-ray irradiation on the structure and field electron emission properties of vertically aligned few-layer graphene[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013(304):49-56. [百度学术]
XI K,BI J S,HU Y,et al. Impact of γ-ray irradiation on graphene nano-disc non-volatile memory[J]. Applied Physics Letters, 2018,113(16):164103. [百度学术]
ELIAS D C,NAIR R R,MOHIUDDIN T M G,et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphene[J]. Science, 2009,323(5914):610-613. [百度学术]
周悦,胡志远,毕大炜,等. 硅基光电子器件的辐射效应研究进展[J]. 物理学报, 2019,68(20):204206. [百度学术]
ZHOU Yue,HU Zhiyuan,BI Dawei,et al. Progress of radiation effects of silicon photonics devices[J]. Acta Physica Sinica, 2019,68(20):204206. [百度学术]
YANG G,KIM B J,KIM K,et al. Energy and dose dependence of proton-irradiation damage in graphene[J]. RSC Advances, 2015,5(40):31861-31865. [百度学术]
MEYER J C,KISIELOWSKI C,ERNI R,et al. Direct imaging of lattice atoms and topological defects in graphene membranes[J]. Nano Letters, 2008,8(11):582-586. [百度学术]
BANHART F,KOTAKOSKI J,KRASHENINNIKOV A V. Structural defects in graphene[J]. ACS Nano, 2011,5(1):26-41. [百度学术]
ZHAO S,XUE J,WANG Y,et al. Effect of SiO2 substrate on the irradiation-assisted manipulation of supported graphene:a molecular dynamics study[J]. Nanotechnology, 2012,23(28):285703. [百度学术]
ANASTASI A A,VALSESIA A,COLPO P,et al. Raman spectroscopy of gallium ion irradiated graphene[J]. Diamond and Related Materials, 2018(89):163-173. [百度学术]
KRASHENINNIKOV A V,NORDLUND K. Ion and electron irradiation-induced effects in nanostructured materials[J]. Journal of Applied Physics, 2010,107(7):071301. [百度学术]
KO G,KIM H Y,REN F,et al. Electrical characterization of 5 MeV proton-irradiated few layer graphene[J]. Electrochemical and Solid State Letters, 2010,13(4):K32. [百度学术]
MATHEW S,CHAN T K,ZHAN D,et al. The effect of layer number and substrate on the stability of graphene under MeV proton beam irradiation[J]. Carbon, 2011,49(5):1720-1726. [百度学术]
张宁,张鑫,杨爱香,等. 质子束辐照单层石墨烯的损伤效应[J]. 物理学报, 2016,65(24):246102. [百度学术]
ZHANG Ning,ZHANG Xin,YANG Aixiang,et al. Damage effects of proton beam irradiation on single layer graphene[J]. Acta Physica Sinica, 2017,66(2):026103. [百度学术]
SHI T,PENG Q,BAI Z,et al. Proton irradiation of graphene: insights from atomistic modeling[J]. Nanoscale, 2019,11(43):20754-20765. [百度学术]
WANG Q,SHAO Y,GE D,et al. Surface modification of multilayer graphene using Ga ion irradiation[J]. Journal of Applied Physics, 2015,117(16):165303. [百度学术]
BARDARSON J H,TWORZYDŁO J,BROUWER P W,et al. One-parameter scaling at the Dirac point in graphene[C]// 2008 APS March Meeting. New Orleans,Louisiana:[s.n.], 2008. [百度学术]
SUZUURA H,ANDO T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice[J]. Physical Review Letters, 2002,89(26):266603. [百度学术]
LEE S,SEO J,HONG J,et al. Proton irradiation energy dependence of defect formation in graphene[J]. Applied Surface Science, 2015(344):52-56. [百度学术]
STAUBER T,PERES N M R,GUINEA F. Electronic transport in graphene:a semiclassical approach including midgap states[J]. Physical Review B, 2007,76(20):205423. [百度学术]
HENTSCHEL M,GUINEA F. Orthogonality catastrophe and Kondo effect in graphene[J]. Physical Review B, 2007,76(11): 115407. [百度学术]
LEE C,KIM J,KIM S J,et al. Strong hole-doping and robust resistance-decrease in proton-irradiated graphene[J]. Scientific Reports, 2016,6(1):21311. [百度学术]
SANYAL B. Conductivity engineering of graphene by defect formation[C]// 2009 APS March Meeting. Pittsburgh,Pennsylvania:[s.n.], 2009:26. [百度学术]
MUELLER T,XIA F,AVOURIS P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010,4(5):297-301. [百度学术]
黄乐,张志勇,彭练矛. 高性能石墨烯霍尔传感器[J]. 物理学报, 2017,66(21):218501. [百度学术]
HUANG Le,ZHANG Zhiyong,PENG Lianmao. High performance graphene Hall sensors[J]. Acta Physica Sinica, 2017,66(21):218501. [百度学术]
刘承鹏. 新型石墨烯场效应晶体管的研究[D]. 成都:电子科技大学, 2020. [百度学术]
LIU Chengpeng. Research on new graphene field effect transistors[D]. Chengdu,China:University of Electronic Science and Technology of China, 2020. [百度学术]
HAN S J,CHEN Z,BOL A A,et al. Channel-length-dependent transport behaviors of graphene field-effect transistors[J]. IEEE Electron Device Letters, 2011,32(6):812-814. [百度学术]
FRANCIS S A,PETROSKY J C,MCCLORY J W,et al. Effects of proton and X-ray irradiation on graphene field-effect transistors with thin gate dielectrics[J]. IEEE Transactions on Nuclear Science, 2014,61(6):3010-3017. [百度学术]
CAZALAS E,HOGSED M R,VANGALA S,et al. Gamma-ray radiation effects in graphene-based transistors with h-BN nanometer film substrates[J]. Applied Physics Letters, 2019,115(22):223504. [百度学术]
JAIN S,GUPTA A,SHINDE V,et al. Application of mono layered graphene field effect transistors for Gamma radiation detection[C]// 2018 IEEE 13th Nanotechnology Materials and Devices Conference(NMDC). Portland,Oregon,USA:IEEE, 2018:1-4. [百度学术]
OLDHAM T R,MCLEAN F B. Total ionizing dose effects in MOS oxides and devices[J]. IEEE Transactions on Nuclear Science, 2003,50(3):483-499. [百度学术]
SALZMANN B,BERNARD C,HEMMI A,et al. Remote doping of graphene on SiO2 with 5 keV X-rays in air[J]. Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films, 2018,36(2):020603. [百度学术]
KAMEDULSKI P,TRUSZKOWSKI S,LUKASZEWICZ J P. Highly effective methods of obtaining N-doped graphene by Gamma irradiation[J]. Materials, 2020,13(21):4975. [百度学术]
JAIN S,GAJARUSHI A S,GUPTA A,et al. A passive gamma radiation dosimeter using graphene field effect transistor[J]. IEEE Sensors Journal, 2019,20(6):2938-2944. [百度学术]
HAN M X,JI Z Y,SHANG L W,et al. γ radiation caused graphene defects and increased carrier density[J]. Chinese Physics B, 2011,20(8):086102. [百度学术]
FAN L,BI J,XI K,et al. Impact of γ-ray irradiation on graphene-based hall sensors[J]. IEEE Sensors Journal, 2021,21(14):16100-16106. [百度学术]
ZENG J,LIU J,ZHANG S,et al. Graphene electrical properties modulated by swift heavy ion irradiation[J]. Carbon, 2019(154):244-253. [百度学术]
ZHOU Y B,LIAO Z M,WANG Y F,et al. Ion irradiation induced structural and electrical transition in graphene[J]. The Journal of Chemical Physics, 2010,133(23):234703. [百度学术]
WANG L,FAN X,LI W,et al. Space irradiation-induced damage to graphene films[J]. Nanoscale, 2017,9(35):13079-13088. [百度学术]
WANG Q,LIU S,REN N. Manipulation of transport hysteresis on graphene field effect transistors with Ga ion irradiation[J]. Applied Physics Letters, 2014,105(13):133506. [百度学术]
HAJATI Y,BLOM T,JAFRI S H M,et al. Improved gas sensing activity in structurally defected bilayer graphene[J]. Nanotechnology, 2012,23(50):505501. [百度学术]
EAPEN J,KRISHNA R,BURCHELL T D,et al. Early damage mechanisms in nuclear grade graphite under irradiation[J]. Materials Research Letters, 2014,2(1):43-50. [百度学术]
OUSEPH P J. Observation of prismatic dislocation loops in graphite by scanning tunneling microscope[J]. Physica Status Solidi(A), 1998,169(1):25-32. [百度学术]
KRISHNA R,JONES A N,MCDERMOTT L,et al. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy[J]. Journal of Nuclear Materials, 2015,467(2):557-565. [百度学术]
KARTHIK C,KANE J,BUTT D P,et al. In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite[J]. Journal of Nuclear Materials, 2011,412(3):321-326. [百度学术]