使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

抗辐射电子学研究综述  PDF

  • 曾超
  • 许献国
  • 钟乐
中国工程物理研究院 电子工程研究所,四川 绵阳 621999

中图分类号: TL7

最近更新:2023-05-29

DOI:10.11805/TKYDA2023083

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

抗辐射电子学是一门交叉性、综合性的学科,其研究的辐射效应规律、损伤作用机制、加固设计方法、试验测试方法、建模仿真方法等对极端恶劣环境中的电子系统的可靠工作至关重要。对核爆炸中子、γ和X射线,空间和大气高能粒子产生的各种损伤效应(如瞬时剂量率效应、总剂量效应、单粒子效应、位移效应等)的研究现状进行了系统梳理。对辐射之间、辐射和环境应力之间的协同损伤效应(如长期原子迁移对瞬时剂量率感生光电流的影响,中子和γ射线同时辐照与序贯辐照、单因素辐照的损伤差异,质子和X射线、中子辐照的损伤差异,γ射线辐照与环境氢气的协同损伤效应等)的研究进展进行了详细介绍。阐述了国内外在核爆、空间和大气辐射加固研究方面的最新技术进展。总结了国内外在地面实验室对空间、大气或核爆辐射各种效应进行试验模拟和建模仿真的相关能力。最后对21世纪20年代以后抗辐射电子学研究领域潜在的挑战和关键技术进行了展望。

抗辐射电子学是一门交叉性、综合性的学科,内容涉及核技术、电磁场与电离辐射、微电子技术、脉冲功率技术、数值计算技术以及电子部件及其元器件的辐射效应规律、损伤机理、加固方法、模拟方法[

1-15]。自1945年7月16日美国试爆第一颗原子弹、1949年8月29日苏联试爆其第一颗原子弹、1964年10月16日中国试爆自己的第一颗原子弹以来,抗辐射电子学逐渐兴起为一门新的学科。以1957年10月4日苏联发射第一颗人造卫星为标志,抗辐射电子学的内涵逐渐深化,形成了独特的学科体系。核爆炸产生了损害电子系统的人为辐射环境,银河、太阳等的高能射线形成卫星必然面临的自然辐射环境。高能射线进入地球大气层产生的大气中子、介子等自然辐射环境,对关键民用设施可造成危害。

核爆炸产生的中子、γ和X射线以及太空的电子、质子和重离子射入电子元器件,会产生各种各样的影响,这些影响称为电子元器件的辐射效[

16-22]。电离辐射与物质作用,产生的破坏因素包括电离效应、位移效应、力效应、热效应等。原子电离产生电离缺陷影响称为电离效应,在半导体器件与集成电路中主要表现为漏电流增加、阈值电压漂移、增益或跨导下降、绝缘电阻变化等。原子位移产生位移缺陷影响称为位移效应,在半导体器件与集成电路中主要表现为寿命或增益下降、电阻率增加、迁移率降低等。半导体器件受多因素辐照呈现电离与位移损伤的协同作用,在环境应力调制下,表现出更复杂的协同损伤机制。

半导体器件与集成电路或微电子器件,对各种人为和自然辐射敏感,需采用适当的加固或防护措[

1-4,9-11,16-18]。抗辐射加固一般包括设计加固和工艺加固。通过试验或仿真,认识半导体材料缺陷形成机制、晶体管或电路性能的退化机制,从电路结构、版图布局、工艺参数控制等不同角度针对性开展工作,以保障加固目标在辐射环境中的正常工作。研究人员虽然攻克了大量的设计和工艺加固关键技术,但高性能数字集成电路、新型半导体器件的高确信加固相关工作仍任重道远。

通常在地面实验室对空间、大气或核爆辐射的各种效应进行不同保真度的试验模拟,测试相关的电、力、热响应。常用的模拟试验装置包括脉冲堆、X射线源、γ射线源、电子加速器、质子加速器、重离子加速器等。

为帮助分析电子系统或微电子器件的辐射效应,改进其抗辐射性能,计算机模拟为常用的辅助手段。相关工作包括辐射效应模型的开发、仿真分析软件平台的建设等。

本文综述了进入21世纪以来,国内外抗辐射电子学领域研究相关进展,梳理了领域存在的重大挑战,展望了领域未来的发展方向。

1 辐射环境

1.1 概述

辐射源来自人为或自然环境。人为环境包括核爆炸、核反应堆、实验室模拟装置[

16-17]:核爆炸产生的辐射包括脉冲中子、X和γ射线等;核反应堆产生的辐射包括稳态γ射线等;实验室模拟试验装置产生的辐射包括中子、X和γ射线、高能电子、高能离子等。自然环境辐射来自银河、太阳等的宇宙射线的持续辐射及其与地球磁场和大气的相互作用,此类辐射包括高能电子、高能质子、重离子、高能中子[5-8];地球磁场捕获了大量宇宙射线,在其周围数个地球半径范围内形成范艾伦辐射带(Van Allen radiation belts)。

总之,自然和人为场景中产生的辐射包括无静止质量的电磁波(含紫外线、X射线、γ射线等)、有静止质量不带电荷的中子、有静止质量且带电荷的离子、电子等。

1.2 核爆炸产生的辐射环境

大气层内核爆炸产生的辐射环境要素见图1,软X射线与大气作用形成热环境和冲击[

3]。γ射线和硬X射线与大气作用激发的自由电子受地磁场作用螺线运动,辐射出电磁脉冲(Electromagnetic Pulses,EMP)。中子飞行速度比光子慢,到达目标位置的时间滞后于γ射线。γ射线和能量10 keV以上(波长1 A˙以下)的X射线易穿透电子器件进入其敏感区形成损伤。

图1  核爆炸破坏环境要素

Fig.1  Factors of environmental damage caused by nuclear explosions

1.3 空间与大气的辐射环境

20世纪建立了地球周围辐射带的质子俘获模型(AP-8)和电子俘获模型(AE-8)[

6],2012年,开发了AP-9、AE-9模[12]。进入21世纪后,美国国家航天局(National Aeronautics and Space Administration,NASA)新千年计划提出了空间辐射环境指标要求,如表1所示。地球同步轨道的一年累积电离总剂量(Total Ionizing Dose,TID)指标为100 Gy(Si)(10 krad(Si)),木星轨道则高1个量级,为1 000 Gy(Si);地球同步轨道的位移损伤1 MeV等效中子注量指标为2×1010 cm-2,木星轨道高1个量级,为2×1011 cm-2。与同位素热电池相关的位移损伤1 MeV等效中子注量环境指标为1×109~1×1010 cm-2

表1  NASA航天器的空间辐射环境指标要求
Table1  Requirements for space radiation environments of NASA spacecraft

2006年,国际电工委员会(International Electrotechnical Commission,IEC)公布了飞行器的大气辐射环[

23]。2015年,给出了高能大气中子、质子、μ子和介子的典型分[13],如图2所示。海平面的中子注量率大约为

图2  大气粒子的微分通量和积分通量

Fig.2  Differential flux and integral flux of atmospheric particles

20 (cm-2·h-1),能量在1 MeV~1 GeV之间;质子的注量率为中子的5%~10%,能量在10 MeV~2 GeV之间;π介子注量率很低,不及中子的1%,能量在10 MeV~2 GeV之间;μ子注量率为中子的1.5~3倍,能量在100 MeV~20 GeV之间。

空间辐射环境模型正向着更高分辨力和更高精细度的方向发展。

2 辐射效应

2.1 概述

核爆炸X射线在电子学系统壳体沉积大量能量,引起壳体材料的层裂或整体破坏(热力学效应)。核爆炸X射线和γ射线进入系统电路中,产生信号的瞬变、逻辑变化甚至烧毁(瞬时剂量率效应);核爆炸中子进入系统电路中,引起电路增益下降(位移损伤效应)或逻辑变化(次级电离效应)[

16-17]。核爆炸X和γ射线作用于系统壳体、连接线缆、印制板互联,产生内电磁脉冲(Internal Electromagnetic Pulse,IEMP)和系统电磁脉冲(System-Generated Electromagnetic Pulse,SGEMP)(图3)。

图3  核爆炸辐射对电子系统的损伤

Fig.3  Damage to electronic system caused by nuclear explosion radiation

γ射线和X射线进入材料后,发生光电效应、康普顿效应或电子对效[

1-4]。材料吸收光子的能量后,部分能量被材料原子核外电子吸收,后者脱离原子核成为自由电子,材料的化学键断裂,形成电离缺陷,造成电离损伤(图4)。

图4  半导体器件的电离损伤

Fig.4  Ionization damage of semiconductor devices

质子、α离子和其他重离子携带电荷进入材料后,与其原子核或核外电子发生库伦作用,使后者发生散射,入射粒子发生反冲失去部分能[

21-23]。在一系列作用后,入射粒子最终停止,作为外来原子成为材料的一部分。与光子的作用类似,带电粒子使电子脱离原子核成为自由电子,材料化学键断裂,形成电离缺陷,造成电离损伤。离子作用路径上产生的大量电子-空穴对被收集,达到器件临界电荷,引发逻辑翻转(如图5)。

图5  入射粒子的电离过程

Fig.5  Ionization process of incident particles

中子不带电,在材料中的射程很大,与材料的作用概率很低。一旦与材料中某个原子发生相互作用,就会使其发生位移,形成初级位移原子。初级位移原子与附近的原子发生级联碰撞,产生一系列点缺陷或缺陷团簇,称为位移缺陷,形成位移损伤(图6)[

1-4,16-17]。中子也以一定概率被材料原子核俘获,释放γ射线。中子与材料发生反应产生的次级离子,相当于在材料内部的作用位置射出离子,发生次级电离损[21]。次级电离同样可引发逻辑翻转。

图6  材料原子的移位过程

Fig.6  Displacement process of material atoms

经过数十年的积累,辐射效应的理论分析、实践应用等均取得了大量成果。但随着半导体新材料、新工艺、新器件的涌现,特别是微电子技术在辐射场中的拓展新应用,不断促进半导体器件与电路的辐射效应新机理及其加固技术的发展。

2.2 瞬时剂量率效应

脉冲γ或X射线在半导体器件PN结耗尽区内感生的载流子被外部电场快速扫出而形成光电流,造成电路烧毁、闭锁或逻辑翻[

24-31]。由于传统PN结隔离产生的PNPN寄生结构的存在,体硅工艺CMOS集成电路存在严重的瞬时剂量率感生闭锁效应。抗瞬时剂量率加固的芯片一般采用对闭锁免疫的介质隔离工艺,如蓝宝石上硅工艺(Silicon On Sapphire,SOS)或绝缘体上硅工艺(Silicon-On-Insulator,SOI),SOS工艺主要流行于20世纪,价格昂贵。部分耗尽绝缘体上硅(Partially Depleted SOI,PD-SOI)工艺从20世纪90年代开始快速发展。为解决埋氧感生电荷的泄放,21世纪初主要采用体引出方法,21世纪10年代发展了双埋氧绝缘体上硅(Double SOI,DSOI)工艺。全耗尽型绝缘体上硅(Fully Depleted SOI,FD-SOI)先进工艺研发以欧洲SOITEC公司、GF公司、美国麻省理工学院林肯实验室、霍尼韦尔公司等为主要代[32]。SOITEC等于2003年、2004年、2006年、2008年、2012年陆续提供了130 nm、90 nm、65 nm、45 nm、28 nm FD-SOI晶圆服务。

美国圣地亚实验室与霍尼韦尔、麻省理工学院林肯实验室等合作,21世纪10年代开发了抗辐射加固350 nm PD-SOI CMOS7工艺平台,2020年建成了180 nm PD-SOI CMOS8工艺平台,预计2025年形成抗辐射90 nm FD-SOI工艺平台,并预留从8吋线升级为12吋线的空间。当前PD-SOI工艺ASIC(Application Specific Integrated Circuit)芯片抗瞬时剂量率已达109 Gy(Si)/s以上,微控制单元(Microcontroller Unit,MCU)等通用数字信号处理芯片能力在108 Gy(Si)/s左右。

21世纪初,我国开发了350 nm、180 nm PD-SOI工艺,目前具备了130 nm工艺能力,并开发了抗瞬时剂量率加固的80C51系列单片机;21世纪10年代研制的金属-氧化物-半导体型场效应管(Metal-Oxide-Semiconductor Field-Effect-Transistor,MOSFET)、比较器等产品达到109 Gy(Si)/s以上;21世纪20年代初,中国工程物理研究院开发了抗瞬时剂量率加固专用数字ASIC芯片。

未来的FD-SOI工艺技术的发展趋势为:工艺节点越来越先进,顶层硅膜厚度越来越小(图7),瞬时剂量率感生光电流随之减小,为芯片的加固提供越来越好的条件。

图7  FD-SOI的工艺演进

Fig.7  Notional structure of an FD-SOI wafer and an FD-SOI transistor

2.3 总剂量效应

半导体器件中,γ辐照产生的电荷可被栅氧化物、场氧化物和侧墙氧化物俘获。氧化物体内俘获电荷在距离界面附近2 nm处形成电荷层,从而改变氧化物的电场分布,引起器件阈值的漂[

1-4,16-18]。辐照在界面处产生的陷阱电荷除了改变阈值电压外,还会引起MOS器件亚阈值特性的改变。浅能级缺陷会随温度或时间发生动态变化,电特性随之发生变化。2020年前后,亚微米节点非加固薄膜工艺耐总剂量水平已经达1 000 Gy(Si)以上,而用于高压场合的厚膜工艺则不足500 Gy(Si)。采用离子注入工艺,提高氧化物中电子陷阱,有助于抵消厚膜工艺中大量的固定正电荷缺陷的作用。

1991年,双极工艺器件隔离氧化物中的界面缺陷存在低剂量率辐照增强效应被发现,21世纪初国内外学者对此进行了广泛而深入的研[

33-45]。21世纪10年代初,对MOS器件和双极器件的γ辐照退化机理有了系统性的认识;10年代末,确认了氢气参与厚氧化物界面陷阱电荷生成的时间依赖机[46-51]

随着MOSFET工艺节点从亚微米到深亚微米再到纳米的提升,栅氧化层厚度从21世纪初的100 nm左右演进到10年代的10 nm左右再到20年代的1 nm量级,栅氧越来越薄,导致其中的氧化物正电荷陷阱影响也越来越[

52-62]。栅氧化物变薄后,侧壁隔离氧化物影响变得非常明显(图8)[61],采用环栅/T栅结构可减小侧壁泄露电流。MOS工艺节点从21世纪初的150 nm逐渐减小到10年代的16 nm,沟道关态泄露电流越来越小。

图8  FinFET的侧壁总剂量辐照漏电效应

Fig.8  Total dose irradiation leakage current on the sidewall of FinFET

介质隔离技术在MOSFET沟道下方引入了埋氧层,该埋氧层也会带来类似栅氧的效应。介质隔离结构从21世纪初的双厚结构逐渐演化为21世纪10年代的双薄结构,改善了背栅氧化物的影响。2020年前后出现了双埋氧结构,通过调节埋氧层电位,可进一步减小辐射感生电离缺陷的影响(图9)[

63]

图9  双埋氧介质隔离技术

Fig.9  Double buried oxide isolation technique

2008年研究发现150 nm FD-SOI抗总剂量在6 000 Gy(Si)左右。2018年报道的65 nm N型金属-氧化物-半导体型场效应管(NMOSFET)抗总剂量达到10 000 Gy(Si)。MOS工艺节点进入10 nm量级后,出现了3D结构器件—鳍栅场效应管(Fin Field-Effect Transistor,FinFET),泄露电流有一定反弹(图10)[

53]。2021年,报道的FinFET抗总剂量水平可达1 MGy(Si)[61]

图10  总剂量效应与工艺节点的变化关系

Fig.10  Relationship between total dose effect and process node

2018年有学者研究了新型光可重新配置门阵列(Optical Reconfigurable Gate Array,ORGA),利用激光二极管阵列和全息照相存储器技术对可编程逻辑单元进行50 ns快速定时刷新,实现了数MGy(Si)加固,如图11[

64]所示。

图11  新型光可重新配置门阵列总剂量效应

Fig.11  Total dose effect of novel optical reconfigurable gate array

我国抗总剂量工艺加固技术的主要代表有中国电子科技集团、航天科技集团九院等。中国电子科技集团在21世纪初开发了亚微米CMOS/SOI工艺技术,10年代实现了150 nm CMOS/SOI工艺技术,达到3 000 Gy(Si)。航天科技集团九院在21世纪初建成了350~500 nm CMOS/SOI抗辐射芯片设计平台,10年代开发了180 nm、130 nm、65 nm的抗辐射芯片设计平台,满足3 000 Gy(Si)要求。

2.4 单粒子效应

CMOS工艺集成电路中,静态随机存取存储器(Static Random-Access Memory,SRAM)在离子环境中容易发生单粒子效应,可通过三模冗余结构和定时刷新进行单粒子翻转加固;通过空间结构交织进行单粒子多位翻转加固;通过介质隔离消除单粒子闭锁,降低单粒子翻转的敏感性。

集成电路从微米尺度进入亚微米、深亚微米尺度,由于每比特的敏感区变小,入射离子的翻转截面有所下降;但从深亚微米到超深亚微米,临界电荷逐渐下降,翻转截面有所反弹。2010年前后,通过纳米尺度集成电路的单粒子效应研究发现,工艺节点越先进,体硅平面器件和FinFET器件的单粒子错误愈严重,FD-SOI器件随工艺的变化不太明显(图12)[

65-68]

图12  不同工艺节点的临界电荷和翻转截面

Fig.12  Critical charge and upset cross section of different process nodes

进入21世纪,国内外广泛研究了深亚微米CMOS集成电路的中子次级电离的翻转和功能中断效[

69-73]。2015年前后,西北核技术研究院研究发现,500~65 nm工艺存储器有轻微的中子次级电离效应,逻辑翻转显著;2019年报道了500~40 nm工艺SRAM的翻转截面,在2×10-13 cm2/bit以下,尺寸较小时截面略小(图13)。2020年前后,中国工程物理研究院研究发现,65 nm CMOS工艺微处理器及其储存单元有显著的14 MeV中子次级电离效应,大约每(1~3)×109 cm-2中子辐照就引起1次逻辑翻转;130 nm CMOS工艺微处理器1 MeV中子次级电离效应较明显,平均每受到(1~2)×1011 cm-2的中子辐照就会引起1次功能中断。

图13  不同工艺节点不同能量中子的翻转截面

Fig.13  Upset cross sections of neutrons with different energies at different process nodes

2019年研究发现,16 nm FinFET工艺SoC Cortex-A53 APU对大气中子敏感,大约每108 cm2中子辐照,出现1次错误。纳米节点器件的大气中子翻转截面见图14[

69]。2019年,报道了新型碳纳米管CMOS SRAM的单粒子效[74]

图14  不同工艺节点的大气中子翻转截面

Fig.14  Upset cross sections of atmospheric neutrons at different process nodes

2.5 位移损伤效应

中子、质子可使半导体器件出现位移缺陷,载流子寿命降低,电阻率增加或迁移率增加[

75-82]。光电器件和双极器件都依靠少数载流子工作,对中子、质子辐照特别敏感。光电器件的光敏感部分掺杂都比较低,辐照产生的额外位移杂质很容易改变其光电转换性能。双极线性器件中子加固水平通常可达到1013 cm-2量级,部分特别加固的器件可达到

1014 cm-2。光电转换器中子加固水平一般在1011 cm-2量级,质子加固一般要低1个量级。

光电器件由于其脆弱性,在各种应用场合已成为抗位移损伤加固研究的重点。21世纪初,美国圣地亚实验室研究人员对GaAs光电二极管和垂直腔面发射激光器进行了中子辐照测试,光电二极管加固后抗中子能力可达1013 cm-2以上。NASA一直在研究光耦器件在空间应用的基本原理和加固保证,联合波音和洛克希德马丁空间系统公司等机构对光耦器件的辐射测试数据进行了汇编。2000年,NASA在总结前期实验的基础上,发布了《空间辐射环境中光耦合器地面辐射测试和光电耦合器使用指南》,给出了基于辐射环境下光耦合器的选择流程。典型LED、光耦抗质子水平在1010 cm-2,见图15

图15  LED和光耦的质子辐照特性

Fig.15  Proton irradiation characteristics of LEDs and optical couplers

2017年研究发现,国产光耦器件GH302抗质子注量水平仅109~1010 cm-2,70 MeV比191.17 MeV质子的损伤更严重(图16)[

83]。2020年的中子辐照测试表明,GH302中子失效阈值约1011 cm-2

图16  GH302质子辐照损伤

Fig.16  Proton irradiation damage of GH302

我国抗质子、中子位移损伤加固主要单位有中国电子科技集团、航天科技集团九院等。21世纪初,中国电子科技集团掌握了系列抗辐射双极工艺技术,建成了4吋线双极工艺平台;21世纪10年代末建成6吋线双极工艺平台,形成覆盖产品范围广、性能先进的特色系列化双极工艺平台。

3 协同效应

3.1 概述

辐射与物质相互作用,其作用过程会受到第三方因素调制的影响,或者说辐射与某因素共同影响了物质的响应过程,称为协同效应。常见的协同效应包括中子和γ的协同、氢气与γ的协同、原子迁移与瞬时剂量率的协同[

84-86]。协同效应经常表现出与单一因素不同的特殊性,一般表现为添加因素后损伤得以增强。

3.2 原子迁移与瞬时剂量率效应的协同

圣地亚实验室在20世纪末系统研究了元器件贮存20年前后的瞬时剂量率效应,从2006年开始进行30年的辐照老化效应研[

87-92]。个别双极门电路的瞬时剂量率感应光电流贮存20年后发生了明显变化,如图17所示。测试表明,敏感部位铝和硅之间的TiW势垒层向硅中扩散,导致寄生晶体管受辐照后感生光电流发生了明显改变。

图17  元器件老化前后的瞬时剂量率感生光电流和原子扩散

Fig.17  Transient dose rate induced photocurrent of 54LS90,54LS14,54LS193 and atomic diffusion before and after component aging

2020年前后,中国工程物理研究院研究了短期老化器件的瞬时剂量率效应。研究显示,典型肖特基二极管、双极晶体管、双极工艺外围接口电路在自然存放2年前后,脉冲γ辐照产生的光电流响应尚无明显变化(图18)。

图18  短期老化前后典型元器件的瞬时剂量率感生光电流对比

Fig.18  Comparison of transient dose rate induced photocurrent of typical components before and after short-term aging

3.3 电离与位移效应的协同

3.3.1 中子与γ射线辐照的协同

中子辐射在半导体内产生位移缺陷,γ辐射在氧化物及其界面产生电离缺陷,2种辐射同时或先后作用于器件,产生的综合效应与单因素辐照相比有一定差[

93-98]

中子辐照一般有小注量(1011 cm-2)、中等注量(1013 cm-2)或大注量(1015 cm-2),由于中子与半导体材料作用存在随机性,小注量中子产生的移位缺陷呈现随机的点状分布,大注量辐照则获得密集的均匀性分布缺陷,中等注量产生的缺陷分布样式介于二者之间。γ辐照通常获得确定的密集缺陷分布。在中子辐照后进行γ辐照,后者不仅会作用于半导体中已有缺陷前驱物,还会作用于中子产生的新缺陷(相当于新增额外的缺陷前驱物),因此,此时γ辐照产生的氧化物固定电荷陷阱和界面陷阱可能与单独进行γ辐照时的情况有所不同。中子辐照通常有伴生的γ射线,相当于伴生有低剂量率γ辐照,因此,中子辐照后半导体器件的损伤将包括基本稳定的位移缺陷(也有退火后基本稳定的极少量氧化物固定电荷)与继续增长的界面缺陷的共同影响(位移损伤趋于稳定后的下限值,界面缺陷趋于稳定后的上限值)。如果先进行γ辐照,再进行中子辐照,则2种辐照试验的间隔时间一般为几小时或几天。在此间隔时间内,γ辐照产生的浅能级的电离缺陷将会发生一定程度的退火。

20世纪有学者研究高注量中子与高剂量γ射线辐照GaAs MOSFET的协同效应,发现单中子辐照损伤略大于γ、中子序贯辐照损伤,且远大于单γ辐照损伤,说明样品对中子辐照非常敏感,对γ辐照不怎么敏感;中子、γ序贯辐照损伤大于γ、中子序贯辐照损伤,说明损伤有顺序依赖,中子引入的位移缺陷在γ辐照条件下能被激活成电离缺陷。2004年,美国波音公司对双极工艺集成电路和光耦开展了类似研究,指出序贯辐照的损伤大于单中子、单γ辐照损伤,未发现不同辐照顺序有显著或规律性的损伤差异。2021年,圣地亚实验室报道了NPN双极晶体管的序贯辐照和同时辐照损伤差异,发现序贯辐照损伤小于同时辐照损伤(图19)[

99]。文中没说明序贯辐照试验中间的间隔时间,也未报道相关的损伤退火过程。

图19  中子与γ辐照的序贯辐照与同时辐照效应

Fig.19  Sequential irradiation and simultaneous irradiation effects of neutron and γ irradiation

21世纪10年代,我国也开展了中子、γ射线组合辐照损伤研究。西北核技术研究院等的研究表明,对于含双极工艺的电源样品,中子与γ同时辐照损伤比单中子或单γ辐照损伤退化量之和要大,也比γ、中子序贯辐照损伤略大一些(图20图21)[

88-89]

图20  同时辐照、序贯辐照与分别辐照的异同

Fig.20  Similarities and differences between simultaneous irradiation, sequential irradiation and separate irradiation

图21  同时辐照与分别辐照的异同

Fig.21  Similarities and differences between simultaneous irradiation and separate irradiation

中国工程物理研究院利用CFBR-II堆和钴源开展了典型双极晶体管(Bipolar Junction Transistor,BJT)和MOSFET的试验研究,发现只要辐照顺序和退火时间控制得当,在试验不确定度范围内,不同辐照顺序的损伤无显著性差异。如图22所示,典型BJT在γ辐照后和中子辐照前的时间间隔内发生了轻微退火,在中子辐照后和γ射线辐照前的间隔期内发生了轻微后损伤;不同顺序造成的末参数差异约10%;如图23所示,典型MOSFET在γ辐照后发生显著退火,在中子辐照后也呈现明显退火;不同顺序辐照的末参数差异几乎为零。2020年也报道了稍微不同的结果,但其中的辐照后退火情况未[

91]

图22  BJT中子与γ射线的协同辐照效应

Fig.22  Synergistic irradiation effect of neutrons and γ rays on BJTs

图23  中子与γ射线对MOSFET的协同辐照效应

Fig.23  Synergistic irradiation effects of neutrons and γ ray on MOSFETs

3.3.2 质子与X射线辐照的协同

带电粒子本身可产生严重的电离损伤和一般性位移损伤,特别是高能质子。2001年至2006年,范登堡大学研究人员研究了200 MeV质子与X射线对LM124运算放大器的辐照损伤,发现质子辐照损伤大于相同电离能损的γ射线的辐照损伤,小于相同非电离能损的中子的辐照损伤,即质子的电离和非电离损伤之间有一定的相互抵消。仿真分析表明,主要诱因(图24)[

100,93]是质子在其输入级PNP氧化物中产生的正电荷缺陷排斥基区少子(空穴)。仿真分析同时表明,如果输入级是NPN,则氧化物中的正电荷缺陷会吸引基区的少子(电子),使质子辐照损伤大于相同非电离能损的中子辐照。21世纪10年代末,我国研究人员也给出了类似的研究结果,并进一步阐述了氧化物和硅的界面陷阱电荷的影响机[94]

图24  质子与X射线辐照的协同效应

Fig.24  Synergistic effect of proton and X-ray irradiation

3.4 氢气与γ射线辐照的协同

γ射线与MOS器件的栅氧化物(1~100 nm)或双极器件的隔离氧化物(100~1 000 nm)作用,产生电子-空穴对,逃脱复合的空穴在氧化物内电场作用下向氧化物与半导体界面扩散或迁移的过程中,与缺陷前驱物作用生成氧化物固定正电荷,或在氢参与下与缺陷前驱物作用释放氢离子,氢离子跳跃式输运到氧化物与半导体界面,与那里的悬挂键作用生成界面陷阱电荷。隔离氧化物中,空穴输运时间为10-3~10-2 s量级,氢离子输运时间为103~104 s量级;栅氧化物中,空穴和氢离子的输运则快得多。

2000年前后,研究人员对双极工艺器件和线性集成电路的低剂量率辐照损伤增强效应(Enhanced Low Dose Rate Sensitivity,ELDRS)有了系统性认[

34-35],对双极器件γ辐照过程中的氢气影响进行了量化分析。2010年左右,针对氢气分子裂解、参与反应的研究发现,双极器件隔离氧化物厚,电场弱,氢离子在其中输运慢,氢分子浓度越低则裂解为氢原子参与反应的速度越慢,由此造成明显的ELDRS,如图25[49]所示。进一步研究发现,氧化物中氢分子被消耗以后,需要通过金属电极引线或氮化物钝化层从外部补充,补充氢气的速度与输运通道的氢气扩散速度相关,快则数天,慢则数月。氢气分子的裂解和补充限制了γ快速辐照所能够产生的界面陷阱的数量,是影响ELDRS的重要因素。

图25  双极隔离氧化物中的氢气裂解、浓度影响规律和试验数据

Fig.25  Hydrogen cracking, dose rate influence law and comparison of experimental and calculated results in bipolar isolated oxide

20世纪已研究了MOS器件中的γ辐照损伤的剂量率依赖效应。21世纪10年代初,对γ射线辐照MOS器件产生界面陷阱电荷的过程进行了系统的仿真分[

48-49]。研究发现,对于深亚微米CMOS工艺,浅槽隔离(Shallow Trench Isolation,STI)工艺是影响辐射效应的主要因素,STI的厚氧化物以及弱电场特性导致其缺陷产生过程有类似双极工艺的ELDRS,氧化物中氢气浓度越低,发生增强效应的剂量率范围越向低端移动,如图26[48]所示。氢离子的产生和输运机制决定了界面陷阱电荷的产生时间过程。

图26  浅槽隔离工艺及其ELDRS、氢气调制规律

Fig.26  Shallow trench isolation process and its dose rate dependence, hydrogen modulation law

4 辐射效应试验模拟

为模拟核爆炸、空间、大气等辐射对电子器件、设备、系统等目标产生的各种效应,国内外在实验室建立了诸多模拟试验装[

1-4,16-17,95-98,101-102],能够对加固风险进行识别,对加固裕度进行评估,或进行加固性能认证。

美国形成了系列辐射模拟设备。圣地亚实验室的SPR-III快中子模拟装置已于21世纪初退役,相关试验研究被数字模拟(Charon工艺仿真分析软件、Xyce电路仿真分析软件)所替代;21世纪10年代以来,主要应用环形反应堆(Annular Core Research Reactor,ACRR)装置开展中子与γ射线混合模拟试验,研究多因素辐照与单因素辐照的差异。圣地亚实验室在21世纪初建成了大面积、高功率HERMES-III强脉冲γ射线模拟装置,能够开展

1010 Gy(Si)/s、500 cm2大部件试验;建立的核爆X射线模拟装置Saturn,一直在持续开展系统电磁脉冲辐照试验。21世纪初,美国建成了低剂量率(10-6~10-3 Gy(Si)/s)到高剂量率(10-3 Gy(Si)/s以上)γ射线模拟装置(Gamma Irradiation Facility,GIF),从21世纪10年代开始,其剂量率范围又扩展到微剂量率(10-6 Gy(Si)/s以下),以开展数分钟到数年不同要求的辐照试验。美国圣地亚实验室建立了系列高能离子注入试验装置,可以在地面模拟空间和大气的各种辐射效应。圣地亚实验室在本世纪初建立的激光模拟试验装置,广泛用于精密测试辐照感生的光电流。

我国建成的系列核爆辐射模拟装置主要在西北核技术研究院、中国工程物理研究院等单位,可以开展与HERMES、Saturn、SPR-III、ACRR等装置相似的试验模拟工作。中国工程物理研究院的CFBR-II堆为快中子脉冲堆,中子/γ比达1×1012 cm-2/Gy(Si),可以开展近单中子因素的辐照试验。西北核技术研究院从21世纪初开始一直在改进西安脉冲反应堆(Xi’an Pulse Reactor,XPR)的试验能力,陆续建成了低中子/γ比5.7×1010 cm-2/Gy(Si)试验台、中等中子/γ比1.3×1011 cm-2/Gy(Si)试验台和高中子/γ比6.1×1011 cm-2/Gy(Si)试验台,可以方便开展中子和γ射线协同辐照试验。中国工程物理研究院、西北核技术研究院、中国科学院等单位一直在提升稳态γ射线试验能力,21世纪10年代末将实验室辐照剂量率从高剂量率拓展到极低剂量率。

西北核技术研究院在21世纪初建成了强光一号核爆脉冲γ射线模拟试验装置,辐照面积和峰值剂量率达到100 cm2、109 Gy(Si)/s以上。中国工程物理研究院于21世纪初建成的脉冲γ/X射线模拟试验装置,可以开展美国圣地亚实验室的HERMES-III及Saturn装置类似试验。

中国原子能科学研究院、中国科学院于21世纪初建成的重离子加速器可以开展各种单粒子效应试验。2014年,中国原子能科学研究院建成100 MeV质子回旋加速器(CY CIAE-100);2020年前后,西北核技术研究院、哈尔滨工业大学等相关单位陆续建成了200 MeV、300 MeV等不同能量的质子同步加速器,与已有的高能重离子模拟装置构成互为补充的模拟试验平台系列。

5 辐射效应建模与仿真

为更好地理解辐射与物质或器件的作用过程,21世纪以来国内外研究提出了许多辐射效应模型,开发了仿真分析平[

103-124]。大多数仿真工具来源于商用软件,其中粒子输运模拟计算软件包括粒子跟踪计算软件包Geant4(GEometry ANd Tracking 4)、中子/光子/电子或耦合中子/光子/电子输运问题的通用软件包MCNP(Monte Carlo N Particle Transport Code)、SRIM(Stopping and Range of Ions in Matter)等;第一性原理和分子动力学软件包括电子结构计算和量子力学-分子动力学模拟软件VASP(Vienna Ab initio Simulation Package)、大规模原子分子并行模拟器(Large-scale Atomic/Molecular Massively Parallel Simulator,LAMMPS)、动力学蒙特卡罗模拟(Kinetic Monte Carlo,KMC)等;半导体器件工艺仿真软件包括Sentaurus TCAD(Technology Computer Aided Design)等;集成电路分析软件包括Cadence、HSPICE、Spectre等;系统仿真软件包括Saber、Proteus、Multisim等。应用现有仿真工具平台进行半导体器件辐射效应仿真的主要挑战在于可信的辐射效应模型的开发,以及复杂电路带来的海量未知量的高效精确求解。

21世纪初,美国推出了ASC先进仿真计算计[

118]。圣地亚实验室于2005年进行了SPR(Subscription Profile Repository)快中子脉冲堆的数字化建设,于2007年、2010年、2020年陆续形成了RAMSES(Radiation Analysis,Modeling and Simulation for Electrical System)系列软件,包括半导体器件工艺仿真建模软件charon,电路仿真建模软件Xyce,电磁环境仿真建模软件EIGER,γ/等离子环境建模仿真软件EMPHASIS/EMPIRE,支持电子系统在电离辐射和电磁环境中的设计、评估和认证。圣地亚实验室通过辐射效应仿真模型和试验数据的有效结合,力图对电子系统全寿命周期的响应进行量化预测,以形成系统方案设计-原理建模仿真-样品试验测试-产品性能监测-系统优化设计的工作环,如图27所示。通过产品服役过程的周期性监测,建立具体产品的数字化孪生体。

图27  圣地亚实验室的辐射效应仿真软件

Fig.27  Radiation effect simulation software in Sandia

进入21世纪,我国在商业常态电路仿真工具基础之上进行的辐射效应建模仿真研究蓬勃发展。北京华大九天软件有限公司2004年推出Empyrean集成电路常态电性能仿真分析工具,2018年形成3条EDA产品线,包括模拟/全定制IC设计、SoC设计优化、平板全流程设计工作。2010年前后,苏州珂晶达电子有限公司开发了半导体器件仿真分析工具软件Genius-TCAD,能够模拟总剂量、单粒子等辐射效应。21世纪20年代,航天科技集团九院、哈尔滨工业大学、西北核技术研究院等相继拓展其空间辐射效应建模仿真能力。

6 总结与展望

由空间、大气与核爆炸辐射引发的电子系统或微电子器件的辐射效应研究随着微电子和电子技术的发展而方兴未艾。传统硅基半导体器件和集成电路的辐射效应研究非常深入,但也有不少挑战,如高性能MCU、SRAM等芯片的瞬时剂量率加固和次级电离加固工艺与设计技术、光电器件的位移加固设计技术、辐射效应的材料-晶体管-电路-系统的跨尺度、多物理建模等。基于硅、超越硅、异于硅的新材料、新工艺、新器件的不断涌现也需要开展针对性的辐射损伤机理和理论研究。新型高密度集成微系统、纳米小尺度器件的损伤新机制需要研究,同时需要开发研制高保真、可配置的辐射效应模拟试验装置。

期待以空间、大气与核爆炸辐射场景为牵引,以试验测试和建模仿真为抓手,从底层材料到顶层系统,优化完善抗辐射电子学体系化研究平台,开发高确信抗辐射加固产品,实现抗辐射电子学在新时代的跨越式发展。

未来一段时间,抗辐射电子学研究领域的关键着力点或核心创新点包括但不限于:

1) 抗辐射新材料、新工艺、新器件研究;

2) 瞬时剂量率加固高性能数字信号处理芯片研究;

3) 中子次级电离加固高性能数字信号处理芯片研究;

4) 中子、质子位移加固新型光电器件研究;

5) 抗辐射加固PDK与IP库开发;

6) 微电子器件辐射效应的多物理协同仿真模型开发;

7) 电子系统辐射效应的数模协同仿真软件平台开发;

8) 组合式高性能辐射模拟试验装置及其数字孪生体开发。

参考文献

1

RUDIE N J. Principles and techniques of radiation hardening[M]. 3rd ed. California:Western Periodicals Company, 1986. [百度学术] 

2

MA T P,DRESSENDORFER P V. Ionizing radiation effects in MOS devices and circuits[M]. Wiley,New York:John Wiley & Sons, 1989. [百度学术] 

3

HOLMES-SIEDLE A,ADAMS L. Handbook of radiation effects[M]. Oxford:Oxford University Press, 1993. [百度学术] 

4

CLAEYS C,SIMOEN E. Radiation effects in advanced semiconductor materials and devices[M]. Berlin:Springer, 2002. [百度学术] 

5

BADHWAR G D,O'NEILL P M,TROUNG A G. Galactic cosmic radiation environment models[R]. NASA,JSC-CN-20414, 2001. [百度学术] 

6

MORTON T L. Estimation of the radiation environment based on the NASA AP-8 and AE-8 models[R]. NASA, 2004. [百度学术] 

7

SASAKI M,NAKAO N,NAKAMURA T,et al. Measurements of the response functions of an NE213 organic liquid scintillator to neutrons up to 800 MeV[J]. Nuclear Instruments and Methods in Physics Research A, 2002,480(2-3):440-447. [百度学术] 

8

GORDON M S,GOLDHAGEN P,RODBELL K P,et al. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground[J]. IEEE Transactions on Nuclear Science, 2004,51(6):3427-3434. [百度学术] 

9

POIVEY C. Radiation hardness assurance for space systems[R]. IEEE NSREC Short Course Notebook, 2002:V1-V57. [百度学术] 

10

PEASE R. Microelectronic piece part radiation hardness assurance for space systems[R]. IEEE NSREC Short Course Notebook, 2004:II1-II56. [百度学术] 

11

SCHWANK J R,SHANEYFELT M R,DODD P E. Radiation hardness assurance testing of microelectronic devices and integrated circuits:radiation environments,physical mechanisms, and foundations for hardness assurance[R]. SAND2008-6851P, 2008. [百度学术] 

12

GINET G P,O'BRIEN T P,HUSTON S L,et al. AE9,AP9 and SPM:new models for specifying the trapped energetic particle and space plasma environment[J]. Space Science Reviews, 2013,179(1-4):579-615. [百度学术] 

13

AUTRAN J L,MUNTEANU D. Soft errors from particles to circuits[M]. Boca Raton:CRC Press, 2015. [百度学术] 

14

CUSTER J. Hostile radiation effects on systems[R]. SAND2017-2826PE, 2017. [百度学术] 

15

LIU Huilan,HOU Yingwei,LI Hui,et al. Cosmic-ray neutron fluxes and spectra at different altitudes based on Monte Carlo simulations[J]. Applied Radiation and Isotopes, 2021(175):1-7. [百度学术] 

16

赖祖武. 抗辐射电子学—辐射效应及加固原理[M]. 北京:国防工业出版社, 1998. [百度学术] 

LAI Zuwu. Radioresistance electronics-radiation effects and reinforcement principles[M]. Beijing:National Defense Industry Press, 1998 [百度学术] 

17

陈盘训. 半导体器件和集成电路的辐射效应[M]. 北京:国防工业出版社, 2005. [百度学术] 

CHEN Panxun. Radiation effects of semiconductor devices and integrated circuits[M]. Beijing:National Defense Industry Press, 2005. [百度学术] 

18

韩郑生. 抗辐射集成电路概论[M]. 北京:清华大学出版社, 2011. [百度学术] 

HAN Zhengsheng. Introduction to radiation hardened integrated circuit[M]. Beijing:Tsinghua University Press, 2011. [百度学术] 

19

沈自才,丁义刚. 抗辐射设计与辐射效应[M]. 北京:中国科学技术出版社, 2015. [百度学术] 

SHEN Zicai,DING Yigang. Anti radiation design and radiation effects[M]. Beijing:China Science and Technology Press, 2015. [百度学术] 

20

蔡明辉,韩建伟,李小银,. 临近空间大气中子环境的仿真研究[J]. 物理学报, 2009,58(9):6659-6664. [百度学术] 

CAI Minghui,HAN Jianwei,LI Xiaoyin,et al. A simulation study of the atmospheric neutron environment in near space[J]. Acta Physica Sinica, 2009,58(9):6659-6664. [百度学术] 

21

中村刚史,马场守,伊部英治,著. 大气中子在先进存储器件中引起的软错误[M]. 陈伟,石绍柱,宋朝晖,等译. 北京:国防工业出版社, 2015. [百度学术] 

NAKAMURA T, BABA M,IBE E. Terrestrial neutron-induced soft errors in advanced memory devices[M]. Translated by CHEN Wei,SHI Shaozhu,SONG Zhaohui,et al. Beijing:National Defense Industry Press, 2015. [百度学术] 

22

陈伟. 宇航器件空间辐射效应研究面临的新问题[J]. 科学通报, 2017,62(10):967-968. [百度学术] 

CHEN Wei. New issues in the study of space radiation effects in aerospace devices[J]. Chinese Science Bulletin, 2017,62(10):967-968. [百度学术] 

23

IEC TS 62396-1. Process management for avionics-atmospheric radiation effects―part 1:accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment[S]. 2006. [百度学术] 

24

WIRTH J L,ROGERS S C. The transient response of transistors and diodes to ionizing radiation[J]. IEEE Transactions on Nuclear Science, 1964,11(5):24-38. [百度学术] 

25

DODD P E,VIZKELETHY G,WALSH D S,et al. Radiation-induced prompt photocurrents in microelectronics:physics[R]. SAND2003-0094, 2003. [百度学术] 

26

SANCHEZ R,MOLLEY P. Sandia national laboratories microelectronics overview[R]. SAND2016-9281PE, 2016. [百度学术] 

27

许献国,胡健栋,赵刚,. 用于抗闭锁的辐射敏感开关[J]. 微电子学, 2005,35(6):581-583. [百度学术] 

XU Xianguo,HU Jiandong,ZHAO Gang,et al. Radiation sensitive switch for latchup prevention[J]. Microelectronics, 2005,35(6):581-583. [百度学术] 

28

许献国,胡健栋,徐曦. 一种抑制辐射闭锁的新方法[J]. 核电子学与探测技术, 2006,26(4):446-449. [百度学术] 

XU Xianguo,HU Jiandong,XU Xi. An innovation for prevention of radiation induced latchup[J]. Nuclear Electronics & Detection Technology, 2006,26(4):446-449. [百度学术] 

29

王桂珍,林东生,齐超,. 0.18 μm CMOS电路瞬时剂量率效应实验研究[J]. 原子能科学技术, 2014,48(11):2165-2169. [百度学术] 

WANG Guizhen,LIN Dongsheng,QI Chao,et al. Experimental research of transient dose rate effect on CMOS circuit with feature size of 0.18 μm[J]. Atomic Energy Science and Technology, 2014,48(11):2165-2169. [百度学术] 

30

杜川华,许献国,赵海霖,. 可编程器件的瞬时电离辐射效应及加固技术研究[J]. 核电子学与探测技术, 2014,34(3):369-374. [百度学术] 

DU Chuanhua,XU Xianguo,ZHAO Hailin,et al. The transient radiation effects and hardness of programmed device[J]. Nuclear Electronics & Detection Technology, 2014,34(3):369-374. [百度学术] 

31

杜川华,赵洪超,邓燕. 瞬态闭锁试验在0.13 μm大规模集成电路中引起的潜在损伤[J]. 原子能科学技术, 2019,53(12):2498-2503. [百度学术] 

DU Chuanhua,ZHAO Hongchao,DENG Yan. Latent damage in 0.13 μm large scale integrated circuit from transient latchup test[J]. Atomic Energy Science and Technology, 2019,53(12):2498-2503. [百度学术] 

32

朱雷. FD-SOI技术产业链及市场简析[J]. 中国集成电路, 2019,28(10):29-32. [百度学术] 

ZHU Lei. Analysis of the FD-SOI technology industry chain and market[J]. China Integrated Circuit, 2019,28(10):29-32. [百度学术] 

33

ENLOW E W,PEASE R L,COMBS W E,et al. Response of advanced bipolar processes to ionizing radiation[J]. IEEE Transactions on Nuclear Science, 1991,38(6):1342-1351. [百度学术] 

34

BUNSON P E,DI VENTRA M,PANTELIDES S T,et al. Hydrogen-related defects in irradiated SiO2[J]. IEEE Transactions on Nuclear Science, 2000,47(6):2289-2296. [百度学术] 

35

HJALMARSON H P,WITCZAK S C,SCHULTZ P A,et al. A mechanism for enhanced low-dose-rate sensitivity of bipolar transistors[R]. SAND2000-0530, 2000. [百度学术] 

36

WITCZAK S C,KING E E,SAKS N S,et al. Geometric component of charge pumping current in nMOSFETs due to low-temperature irradiation[J]. IEEE Transactions on Nuclear Science, 2002,49(6):2662-2666. [百度学术] 

37

SHANEYFELT M R,PEASE R L,SCHWANK J R,et al. Impact of passivation layers on enhanced low-dose-rate sensitivity and pre-irradiation elevated temperature stress effects in bipolar linear ICs[J]. IEEE Transactions on Nuclear Science, 2002,49(6):3171-3179. [百度学术] 

38

SHANEYFELT M R,PEASE R L,MAHER M C,et al. Passivation layers for reduced total dose effects and ELDRS in linear bipolar devices[J]. IEEE Transactions on Nuclear Science, 2003,50(6):1784-1790. [百度学术] 

39

HJALMARSON H P,PEASE R L,WITCZAK S C,et al. Mechanisms for radiation dose-rate sensitivity of bipolar transistors[J]. IEEE Transactions on Nuclear Science, 2003,50(6):1901-1909. [百度学术] 

40

EDWARDS A H,SCHULTZ P A,HJALMARSON H P. Spontaneous ionization of hydrogen atoms at the Si-SiO2 interface[J]. Physical Review B, 2004,69(12):126318. [百度学术] 

41

BOCH J,SAIGNÉ F,SCHRIMPF R D,et al. Effect of switching from high to low dose rate on linear bipolar technology radiation response[J]. IEEE Transactions on Nuclear Science, 2004,51(5):2896-2902. [百度学术] 

42

TSETSERIS L,SCHRIMPF R D,FLEETWOOD D M,et al. Common origin for enhanced low-dose-rate sensitivity and bias temperature instability under negative bias[J]. IEEE Transactions on Nuclear Science, 2005,52(6):2265-2271. [百度学术] 

43

BOCH J,SAIGNE F,TOUBOUL A D,et al. Dose rate effects in bipolar oxides:competition between trap filling and recombination[J]. Applied Physics Letters, 2006,88(23):232113. [百度学术] 

44

FLEETWOOD D M,SCHRIMPF R D,PANTELIDES S T,et al. Electron capture,hydrogen release and enhanced gain degradation in linear bipolar devices[J]. IEEE Transactions on Nuclear Science, 2008,55(6):2986-2991. [百度学术] 

45

PEASE R L,SCHRIMPF R D,FLEETWOOD D M. ELDRS in bipolar linear circuits:a review[J]. IEEE Transactions on Nuclear Science, 2009,56(4):1894-1908. [百度学术] 

46

CHEN Dakai,PEASE R,KRUCKMEYER K,et al. Enhanced low dose rate sensitivity at ultra-low dose rates[J]. IEEE Transactions on Nuclear Science, 2011,58(6):2983-2990. [百度学术] 

47

WITCZAK S C,LACOE R C,MAYER D C,et al. Space charge limited degradation of bipolar oxide at low electric fields[J]. IEEE Transactions on Nuclear Science, 1998,45(6):2339-2351. [百度学术] 

48

ESQUEDA I S,BARNABY H J,ADELL P C,et al. Modeling low dose rate effects in shallow trench isolation oxides[J]. IEEE Transactions on Nuclear Science, 2011:58(6):2945-2952. [百度学术] 

49

ROWSEY N L,LAW M E,SCHRIMPF R D,et al. A quantitative model for ELDRS and H2 degradation effects in irradiated oxides based on first principles calculations[J]. IEEE Transactions on Nuclear Science, 2011,58(6):2937-2944. [百度学术] 

50

陆妩,任迪远,郑玉展,. 典型器件和电路不同剂量率的辐射效应[J]. 太赫兹科学与电子信息学报, 2012,10(4):484-489. [百度学术] 

LU Wu,REN Diyuan,ZHENG Yuzhan,et al. Radiation effects of the typical devices and circuits for high and low dose rate irradiations[J]. Journal of Terahertz Science and Electronic Information Technology, 2012,10(4):484-489. [百度学术] 

51

何宝平,姚志斌,刘敏波,. 双极器件低剂量率辐射损伤增强效应物理机制研究[J]. 现代应用物理, 2013,4(2):138-143. [百度学术] 

HE Baoping,YAO Zhibin,LIU Minbo,et al. Investigation of physical mechanism of enhanced low dose rate sensitivity for bipolar devices[J]. Modern Applied Physics, 2013,4(2):138-143. [百度学术] 

52

HARA K,KOCHIYAMA M,MOCHIZUKI A,et al. Radiation resistance of SOI pixel devices fabricated with OKI 0.15 μm FD-SOI technology[J]. IEEE Transactions on Nuclear Science, 2009,56(5):2896-2904. [百度学术] 

53

HUGHES H,MCMARR P,ALLES M,et al. Total ionizing dose radiation effects on 14 nm FinFET and SOI UTBB technologies[C]// 2015 IEEE Radiation Effects Data Workshop(REDW). Boston,USA:IEEE, 2015:1-6. [百度学术] 

54

LEE J H. Bulk FinFETs:design at 14 nm node and key characteristics[M]// Nano devices and circuit techniques for low energy applications and energy harvesting. Dordrecht:Springer, 2016:33-64. [百度学术] 

55

KING M P,WU X,ELLER M,et al. Analysis of TID process,geometry,and bias condition dependence in 14 nm FinFETs and implications for RF and SRAM performance[J]. IEEE Transactions on Nuclear Science, 2017,64(1):285-292. [百度学术] 

56

RADAMSON H,ZHANG Y,HE X,et al. The challenges of advanced CMOS process from 2D to 3D[J]. Applied Sciences, 2017,7(10):1047. [百度学术] 

57

金林,王菲菲. FinFET工艺对MOS器件辐射效应的影响[J]. 半导体技术, 2016,41(7):481-488. [百度学术] 

JIN Lin,WANG Feifei. Influence of FinFET technology on radiation effects of MOS devices[J]. Semiconductor Technology, 2016,41(7):481-488. [百度学术] 

58

苏丹丹,周航,郑齐文,. 总剂量辐射对65 nm NMOSFET热载流子敏感参数的影响[J]. 微电子学, 2018,48(1):126-130. [百度学术] 

SU Dandan,ZHOU Hang,ZHENG Qiwen,et al. Degradation of hot carrier sensitivity caused by total dose irradiation in 65 nm NMOSFET[J]. Microelectronics, 2018,48(1):126-130. [百度学术] 

59

CASAS L M J,CERESA D,KULIS S,et al. Characterization of radiation effects in 65 nm digital circuits with the DRAD digital radiation test chip[J]. Journal of Instrumentation:an IOP and SISSA Journal, 2017,12(2):C02039. [百度学术] 

60

BORGHELLO G,FACCIO F,LERARIO E,et al. Dose-rate sensitivity of 65 nm MOSFETs exposed to ultrahigh doses[J]. IEEE Transactions on Nuclear Science, 2018,65(8):1482-1487. [百度学术] 

61

PRIVAT A,BARNABY H J,SPEAR M,et al. Evidence of interface trap build-up irradiated 14 nm bulk FinFET technologies[R]. SAND2020-10812C, 2020. [百度学术] 

62

MA T, BONALDO S,MATTIAZZO S,et al. TID degradation mechanisms in 16 nm bulk FinFETs irradiated to ultrahigh doses[J]. IEEE Transactions on Nuclear Science, 2021,68(8):1571-1578. [百度学术] 

63

GAO Yuan,LU Kai,CHANG Yongwei. Investigation of negative bias effect on radiation hardening for double SOI technology[J]. IEEE Transactions on Nuclear Science, 2022,69(4):908-994. [百度学术] 

64

FUJIMORI T,WATANABE M. A 603 Mrad total-ionizing-dose tolerance optically reconfigurable gate array VLSI[C]// 2018 International Conference on Signals and Systems(ICSigSys). Bali,Indonesia:IEEE, 2018:249-254. [百度学术] 

65

SEIFERT N,GILL B,JAHINUZZAMAN S,et al.Soft error susceptibilities of 22 nm tri-gate devices[J]. IEEE Transactions on Nuclear Science, 2012,59(6):2666-2673. [百度学术] 

66

TANG D,LI Y H,ZHANG G H,et al. Single event upset sensitivity of 45 nm FDSOI and SOI FinFET SRAM[J]. Science China Technological Sciences, 2013,56(3):780-785. [百度学术] 

67

BARNABY H J,SCHRIMPF R D,STERNBERG A L,et al. Proton radiation response mechanisms in bipolar analog circuits[J]. IEEE Transactions on Nuclear Science, 2001,48(6):2074-2080. [百度学术] 

68

BALL D R,SCHRIMPF R D,BARNABY H J. Experimental analysis of proton-induced displacement and ionization damage using gate-controlled lateral PNP bipolar transistors[R]. NTRS-NASA Technical Reports Server, 2006. [百度学术] 

69

ANDERSON J D. Neutron beam testing methodology and results for a complex programmable multiprocessor SoC[D]. Provo,Utah,USA:Brigham Young University, 2019. [百度学术] 

70

HUBERT G,ARTOLA L,REGIS D. Impact of scaling on the soft error sensitivity of bulk,FDSOI and FinFET technologies due to atmospheric radiation[J]. Integration:The VLSI Journal, 2015(50):39-47. [百度学术] 

71

ZHANG Ying,LIU Yang,ZHOU Hang. Ultra-slow dynamic annealing of neutron-induced defects in n-type silicon:role of charge carriers[J]. European Physical Journal Plus, 2020(135):827. [百度学术] 

72

杨善潮,齐超,刘岩,. 中子单粒子效应研究现状及进展[J]. 强激光与离子束, 2015,27(11):4-10. [百度学术] 

YANG Shanchao,QI Chao,LIU Yan,et al. Review of neutron induced single event effects on semiconductor devices[J]. High Power Laser and Particle Beams, 2015,27(11):4-10. [百度学术] 

73

段丙皇,杜川华,朱小锋,. 微处理器中子单粒子效应测试系统设计与试验研究[J]. 原子能科学技术, 2022,56(4):734-741. [百度学术] 

DUAN Binghuang,DU Chuanhua,ZHU Xiaofeng,et al. Design and test of neutron-induced single event effect monitoring system on microprocessor[J]. Atomic Energy Science and Technology, 2022,56(4):734-741. [百度学术] 

74

KANHAIYA P S,LAU C,HILLS G,et al. Carbon nanotube-based CMOS SRAM:1 kbit 6T SRAM arrays and 10T SRAM cells[J]. IEEE Transactions on Electron Devices, 2019,66(12):5375-5380. [百度学术] 

75

王长河. 航天电子系统中的电子元器件辐射效应分析及抗辐射对策[J]. 电子元器件应用, 2001,3(7):4-6,41. [百度学术] 

WANG Changhe. Analysis of radiation effect of electronic components & devices in aerospace electronic systems and radiation-resistant measures[J]. Electronic Component & Device Applications, 2001,3(7):4-6,41. [百度学术] 

76

刘书焕,林东生,郭晓强,. SiGe HBT的脉冲中子及γ辐射效应[J]. 半导体学报, 2007,28(1):78-83. [百度学术] 

LIU Shuhuan,LIN Dongsheng,GUO Xiaoqiang,et al. Experimental study on pulse neurton and Gamma ray irradiation effect on SiGe HBT[J]. Chinese Journal of Semiconductors, 2007,28(1):78-83. [百度学术] 

77

白小燕,彭宏论,林东生,. 商用三端稳压器的中子辐射效应[J]. 核电子学与探测技术, 2010,30(9):1269-1274. [百度学术] 

BAI Xiaoyan,PENG Honglun,LIN Dongsheng,et al. The neutron irradiation effect on commercial three-terminal regulators[J]. Nuclear Electronics & Detection Technology, 2010,30(9):1269-1274. [百度学术] 

78

王晨辉,陈伟,刘岩,. 基区表面势对栅控横向PNP 晶体管中子位移损伤的影响[J]. 强激光与粒子束, 2015,27(11):171-176. [百度学术] 

WANG Chenhui,CHEN Wei,LIU Yan,et al. Influence of base surface potential on neutron displacement damage of gate-controlled lateral PNP bipolar transistors[J]. High Power Laser and Beams, 2015,27(11):171-176. [百度学术] 

79

黄绍艳,刘敏波,唐本奇,. 光电耦合器的反应堆中子辐射效应[J]. 强激光与粒子束, 2011,23(3):801-805. [百度学术] 

HUANG Shaoyan,LIU Minbo,TANG Benqi,et al. Effect of reactor neutron irradiation on optocouplers[J]. High Power Laser and Beams, 2011,23(3):801-805. [百度学术] 

80

罗雁横,张瑞君. 空间辐射环境与光器件抗辐射加固技术进展[J]. 电子与封装, 2009,9(8):43-47. [百度学术] 

LUO Yanheng,ZHANG Ruijun. Space radiation environment and resist-radiation hardening technology progress of optical devices[J]. Electronics & Packaging, 2009,9(8):43-47. [百度学术] 

81

张瑞君. 空间辐射环境与光电器件抗辐射加固技术[J]. 光纤光缆传输技术, 2010(1):34-38. [百度学术] 

ZHANG Ruijun. Space radiation environment and anti radiation reinforcement technology for optoelectronic devices[J]. Guangxian Guanglan Chuanshu Jishu, 2010(1):34-38. [百度学术] 

82

姚和平,杨力宏,刘智,. 一种抗辐射加固型低压差线性稳压器的研制[J]. 太赫兹科学与电子信息学报, 2017,15(1):134-138. [百度学术] 

YAO Heping,YANG Lihong,LIU Zhi,et al. Design of a radiation hardening low dropout regulator[J]. Journal of Terahertz Science and Electronic Information Technology, 2017,15(1):134-138. [百度学术] 

83

李铮,于庆奎,罗磊,. 宇航用双极器件和光电耦合器位移损伤试验研究[J]. 航天器环境工程, 2017,34(1):86-90. [百度学术] 

LI Zheng,YU Qingkui,LUO Lei,et al. Experimental study on displacement damage of aerospace bipolar and optocoupler devices[J]. Spacecraft Environment Engineering, 2017,34(1):86-90. [百度学术] 

84

HARTMAN E F. Aging and radiation effects in stockpile electronics[R]. SAN099-0679C, 1999. [百度学术] 

85

HORN K M. Managing age-related changes in device radiation-response[R]. SAND2008-6403C, 2008. [百度学术] 

86

HORN K M. Laser measurement techniques for detecting age-related degradation of device radiation response[R]. SAND2009-3064C, 2009. [百度学术] 

87

LI Xingji,LIU Chaoming,YANG Jianqun. Synergistic effect of ionization and displacement damage in NPN transistors caused by protons with various energies[J]. IEEE Transaction on Nuclear Science, 2015,62(3):1375-1382. [百度学术] 

88

WANG C,CHEN W,YAO Z,et al. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors[J]. Nuclear Instruments & Methods in Physics Research A, 2016(831):322-327. [百度学术] 

89

WANG C,CHEN W,LIU Y,et al. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors[J]. Nuclear Instruments & Methods in Physics Research A, 2016(831):328-333. [百度学术] 

90

SONG Yu,ZHANG Ying,LIU Yang,et al. Mechanism of synergistic effects of neutron-and Gamma-ray-radiated PNP bipolar transistors[J]. ACS Applied Electronic Materials, 2019,1(4):538-547. [百度学术] 

91

王凯,吕学阳,吴锟霖,. 不同顺序中子/γ 辐照对双极器件电流增益的影响[J]. 强激光与粒子束, 2020,32(4):104-109. [百度学术] 

WANG Kai,LYU Xueyang,WU Kunlin,et al. Effects of different sequential neutron/gamma irradiation on current gain of bipolar devices[J]. High Power Laser and Particle Beams, 2020,32(4):104-109. [百度学术] 

92

朱小锋,许献国,刘珉强. 典型电子器件中子和总剂量辐照协同损伤研究[J]. 太赫兹科学与电子信息学报, 2021,19(4):728-732. [百度学术] 

ZHU Xiaofeng,XU Xianguo,LIU Minqing. Neutron and γ-ray synergic radiation effect of typical electronic components[J]. Journal of Terahertz Science and Electronic Information Technology, 2021,19(4):728-732. [百度学术] 

93

BARNABY H J,SMITH S K,SCHRIMPF R D,et al. Analytical model for proton radiation effects in bipolar devices[J]. IEEE Transaction on Nuclear Science, 2002,49(6):2643-2649. [百度学术] 

94

李兴冀. 星用双极型器件带电粒子辐照效应及损伤机理[D]. 哈尔滨:哈尔滨工业大学, 2010:37-66. [百度学术] 

LI Xingji. Radiation effects and damage mechanisms caused by charged particles on bipolar devices used for space craft[D]. Harbin,China:Harbin Institute of Technology, 2010:37-66. [百度学术] 

95

HATTAR K,HANSON D. Sandia's experimental radiation capabilities[R]. Sandia National Laboratories, 2017. [百度学术] 

96

BIELEJEC Edward. Ion beam implantation for nanofabrication and modification[R]. SAND2021-0033PE, 2021. [百度学术] 

97

邱爱慈. 脉冲功率技术应用[M]. 西安:陕西科学技术出版社, 2016. [百度学术] 

QIU Aici. Application of pulse power technology[M]. Xi'an,China:Shaanxi Science and Technology Press, 2016. [百度学术] 

98

王桂珍,丛培天,林东生,. "强光一号"瞬时辐射效应测量技术研究[J]. 试验与研究, 2007,30(4):8-16. [百度学术] 

WANG Guizhen,CONG Peitian,LIN Dongsheng. Measurement of dose rate effects on electronic devices and circuits on "Qiangguang-I"[J]. Shiyan Yu Yanjiu, 2007,30(4):8-16. [百度学术] 

99

SEESTROM Susan. Sandia national laboratories nuclear physics activities[R]. SAND2021-3669PE, 2021. [百度学术] 

100

BARNABY H J,SCHRIMPF R D,STERNBERG A L,et al. Proton radiation response mechanisms in bipolar analog circuits[J]. IEEE Transaction on Nuclear Science, 2001,48(6):2074-2080. [百度学术] 

101

李沫,孙鹏,宋宇,. 半导体器件辐射电离效应的激光模拟方法[J]. 太赫兹科学与电子信息学报, 2015,13(1):160-168. [百度学术] 

LI Mo,SUN Peng,SONG Yu,et al. Basic principles and research progress of laser simulation of ionization radiation effect in semiconductor devices[J]. Journal of Terahertz Science and Electronic Information Technology, 2015,13(1):160-168. [百度学术] 

102

朱升云,郭刚,何明,. HI-13串列加速器核物理应用研究发展现状和展望[J]. 原子能技术, 2020,54(S1):1-16. [百度学术] 

ZHU Shengyun,GUO Gang,HE Ming,et al. Present status and future prospect of applied nuclear physics research at HI-13 tandem accelerator[J]. Atomic Energy Science and Technology, 2020,54(S1):1-16. [百度学术] 

103

RASHKEEV S N,CIRBA C R,FLEETWOOD D M,et al. Physical model for enhanced interface-trap formation at low dose rates[J]. IEEE Transaction on Nuclear Science, 2002,49(6):2650-2655. [百度学术] 

104

BOCH J,SAIGNE F,SCHRIMPF R D,et al. Physical model for the low-dose-rate effect in bipolar devices[J]. IEEE Transaction on Nuclear Science, 2006,53(6):3655-3660. [百度学术] 

105

HENNIGAN G L,HOEKSTRA R J,CASTRO J P,et al. Simulation of neutron radiation damage in silicon semiconductor devices[R]. SAND2007-XXX7157, 2007. [百度学术] 

106

PERSHENKOV V S,CHUMAKOV K A,NIKIFOROV A Y,et al. Interface trap model for the low-dose-rate effect in bipolar devices[C]// 2007 The 9th European Conference on Radiation and Its Effects on Components and Systems. Deauville,France:IEEE, 2007:10-14. [百度学术] 

107

HJALMARSON H P,PEASE R L,DEVINE R. Calculation of radiation dose-rate sensitivity of bipolar transistors[J]. IEEE Transaction on Nuclear Science, 2008,55(6):3009-3015. [百度学术] 

108

胡志良,贺朝会,张国和,. 超深亚微米SOI NMOSFET 中子辐照效应数值模拟[J]. 原子能科学技术, 2011,45(4):456-460. [百度学术] 

HU Zhiliang,HE Chaohui,ZHANG Guohe,et al. Simulation for neutron radiation effects on super deep submicron SOI NMOSFET[J]. Atomic Energy Science and Technology, 2011,45(4):456-460. [百度学术] 

109

ESQUEDA I S,BARNABY H J,ADELL P C,et al. Modeling low dose rate effects in shallow trench isolation oxides[J]. IEEE Transactions on Nuclear Science, 2011,58(6):2945-2952. [百度学术] 

110

CHEN X J,BARNABY H J,ADELL P,et al. Modeling the dose rate response and the effects of hydrogen in bipolar technologies[J]. IEEE Transactions on Nuclear Science, 2009,56(6):3196-3202. [百度学术] 

111

BARNABY H J,VERMEIRE B,CAMPOLA M J. Improved model for increased surface recombination current in irradiated bipolar junction transistors[J]. IEEE Transactions on Nuclear Science, 2015,62(4):1658-1664. [百度学术] 

112

WANG Chenhui,BAI Xiaoyan,CHEN Wei,et al. Simulation of synergistic effects on lateral PNP bipolar transistors induced by neutron and gamma irradiation[J]. Nuclear Instruments and Methods in Physics Research, 2015(796):108-113. [百度学术] 

113

ESQUEDA I S,BARNABY H J,KING M P. Compact modeling of total ionizing dose and aging effects in MOS technologies[R]. SAND2015-0868J, 2015. [百度学术] 

114

陈勇,陈章勇,陈燕武. Saber仿真软件的设计与应用[M]. 北京:科学出版社, 2017. [百度学术] 

CHEN Yong,CHEN Zhangyong,CHEN Yanwu. Design and application of Saber simulation software[M]. Beijing:Science Press, 2017. [百度学术] 

115

聂典,李北雁,聂梦晨,. Multisim 12仿真在电子电路设计中的应用[M]. 北京:电子工业出版社, 2017. [百度学术] 

NIE Dian,LI Beiyan,NIE Mengchen,et al. Application of Multisim 12 simulation in electronic circuit design[M]. Beijing:Electronic Industry Press, 2017. [百度学术] 

116

陈伟,丁李利,郭晓强. 半导体器件辐射效应数值模拟技术研究现状与发展趋势[J]. 现代应用物理, 2018,9(1):1-7. [百度学术] 

CHEN Wei,DING Lili,GUO Xiaoqiang. Current research and development tendencies of modeling and simulation of radiation effects in semiconductor devices[J]. Modern Applied Physics, 2018,9(1):1-7. [百度学术] 

117

HARRINGTON R C,KAUPPILA J S,MAHARREY J A,et al. Empirical modeling of FinFET SEU cross sections across supply voltage[J]. IEEE Transactions on Nuclear Science, 2019,66(7):1427-1432. [百度学术] 

118

COLLIS S S. Overview of Sandia and ASC program[R]. SAND2020-10970C, 2020. [百度学术] 

119

EL-HAGEEN H M. Modeling the performance characteristics of optocoupler under irradiated fields[J]. Multiscale and Multidisciplinary Modeling,Experiments and Design, 2020,3(1):33-39. [百度学术] 

120

ZHANG Ying,LIU Yang,ZHOU Hang,et al. Ultra-slow dynamic annealing of neutron-induced defects in n-type silicon: role of charge carriers[J]. European Physical Journal Plus, 2020(135):827. [百度学术] 

121

FAN Linjie,BI Jinshun,XI Kai,et al. Investigation of radiation effects on FD-SOI hall sensors by TCAD simulations[J]. Sensors, 2020,20(14):3946. [百度学术] 

122

YI S,TALIN A A,MARINELLA M J,et al. Physical compact model for three-terminal SONOS synaptic circuit element[R]. SAND2022-5364J, 2022. [百度学术] 

123

BLACK J D. Modeling and simulation approaches to single-event effects in microelectronics[R]. SAND2020-2046PE, 2020. [百度学术] 

124

MUSSON L,HENNIGAN G,GAO X,et al. Charon user manual:v.2.1(revisionl)[R]. SAND2020-5266, 2020. [百度学术]