摘要
山地环境通常具有多样化地形,针对山地无线通信中由于地形遮挡导致信号传播路径复杂的问题,提出了基于不同山地坡度下的太赫兹无线通信建模方法。通过数字高程模型(DEM)获取地形数据,结合射线追踪法,引入坡度因子对山地太赫兹信号传播特性进行分析;对接收器的接收功率进行仿真实验,建立地形坡度和接收功率的量化关系。仿真结果表明,不同坡度区域在信号覆盖和时延特性方面存在显著差异:山地中较平坦的区域通常具有更稳定的信号覆盖,功率值分布较集中(-172.5~-117.5 dBm);而在陡峭坡度区域,信号覆盖表现不佳,功率分布较分散,但时延扩展分布较集中(0~3 ns)。
太赫兹技术结合无人机作为空中基站应用,可在紧急情况下迅速部署,提供临时的大带宽、高可靠性和低延迟通信服务。因此,这种技术能有效拓展到通信基础设施不足的区域,为山地通信场景提供新的解决方案和应用前景。
对太赫兹信道建模能够深入解析极高频信号在复杂环境中的传播特性,如山地环境,通过准确的信道建模,能够优化无线通信系统的设计,这对未来的无线通信技术,如6G尤为重要。当前研究主要侧重于城市街
常见的信道模型包括确定性模型、随机性模型和统计性模型。射线追踪技术可广泛用于从低频段到太赫兹频段的各种应用场
本文首先通过地理空间数据云平台下载山地DEM数据;然后采用ArcGIS软件对下载的地图进行分割,提取坡度值;最后对地形取样点,获取该样点的坡度。
DEM是一个栅格数据集,其中每个像元代表一个地球表面特定点的高程值。从数学方面看,DEM表示区域D上的三维向量有限序列,用函数表示为:
(1) |
式中:为平面坐标;Zi为对应的高程。DEM基本的地形分析有坡度、坡向、山体阴影、等值线等,本文主要针对山地坡度因素对无线通信的影响进行研究。山地坡度是通过计算表面中心像元在水平方向和垂直方向的高程变化率确定的。坡度以度为单位的计算公式为:
(2) |
首先将分割完成的地图以“.tif”格式导入Wireless Insite软件,然后根据山地模型设置环境的相对介电系数和导电度等参数,接着配置天线、电波,放置发射器(Transmitter,Tx)和接收器(Receiver,Rx),最后设定计算引擎并对通信系统的数据进行分析。
采用射线追踪算法对山区的太赫兹无线通信进行模拟研究。射线追踪法是基于几何光学理论以及电磁场理论仿真特定环境下信号的传播路径,通过射线追踪技术能够对太赫兹信号传播进行精确建
(3) |
式中:为波长;为自由空间阻抗(377 );为路径的数量;和为接收点第条路径电场的和分量,和为到达方向,用函数表示为:
(4) |
式中:为接收天线增益的分量;为远区电场分量的相对相位;的计算公式同理。
为发射波形频谱与接收机频率灵敏度频谱的重叠:
(5) |
式中:为发射波形的中心频率;为带宽。
时延扩展是分析多径效应的一项重要指标,通过在载波频率下假设窄带信号,并依据
(6) |
式中:为第条传播路径的到达时间;为第条路径的时间平均功率;为平均到达时间:
(7) |
基于DEM数据,本文选取了3个坡度范围的山地,分别为0°~9.8°、16.9°~33.2°和40.2°~62.6°。如

图1 不同坡度山地
Fig.1 Mountainous terrain with different slopes
针对山地地形的研究,本文中,地面的相对介电常数和导电度采用默认值,分别为25和0.02 S/m;Tx使用定向天线,Rx使用半波偶极子天线,同时对天线采用垂直极化的方式。在100 GHz以下的频段,已有研究人员发表了众多的成
2 GHz。具体的信道参数如
parameter | value |
---|---|
center frequency/GHz | 110 |
bandwidth/GHz | 2 |
transmission power/dBm | 0 |
transmitter height/m | 200 |
receiver height/m | 1.5 |
propagation model | X3D |
number of reflections | 6 |
number of transmissions | 0 |
number of diffractions | 1 |
山地环境复杂多变,坡度的变化直接影响信号传播路径和覆盖范围。本文首先通过仿真预测出以Tx为圆心,水平半径为170 m的信道传播路径,然后在此基础上计算接收功率。对3种坡度地形的接收功率进行仿真,结果如

图2 不同坡度山地的接收功率覆盖图
Fig.2 Received power coverage map for mountainous terrain with different slopes
为进一步探究不同坡度上的Rx接收功率随距离的变化,对比分析3个坡度范围的接收功率。仿真参数保持与上述信道参数一致,唯一的变化是Rx不再呈环状分布,而是均匀覆盖整个矩形地形,Rx之间的间隔为30 m,同时Tx位于地形的中央。不同坡度山地的接收功率随距离变化的仿真结果如

图3 不同坡度山地的接收功率仿真结果
Fig.3 Simulated received power results for mountainous terrain with varying slope gradients
对不同坡度条件下的接收功率进行累积分布函数(Cumulative Distribution Function,CDF)的比较分析,结果如

图4 不同坡度山地的接收功率的累积分布函数
Fig.4 CDF of received power in mountainous terrain with varying slope gradients
在Tx和Rx的直线距离550 m内,不同坡度对应的接收功率如

图5 不同坡度对应的接收功率图
Fig.5 Received power distribution across different slope angles
根据接收功率的仿真数据,可进一步分析太赫兹信号特性,如时延扩展。在不同坡度的地形上,时延扩展累积分布函数表现出明显差异,如

图6 不同坡度山地的时延扩展的累积分布函数
Fig.6 CDF of delay spread in mountainous terrains with varying slopes
本文引入坡度因子对山地太赫兹无线通信进行分析,通过数字高程模型获取山地数据,并采用射线追踪法确保地形建模的精确性和信号传播路径的准确模拟;比较了不同山地坡度条件的太赫兹信号的传播特性。通过这项研究,揭示了陡峭坡度导致信号衰减增加的现象,深入理解了坡度对无线通信的影响,为提升山地环境中的通信质量和覆盖范围提供了理论依据。此外,本文的研究结果对山地太赫兹通信具有一定的普适性,结论有望推广至更高频段(如220 GHz、340 GHz)的太赫兹通信。下一步研究工作将考虑更多实际地形因素,如植被覆盖、土壤类型等,以进一步提高仿真结果的准确性和价值。
参考文献
MORAITIS N,NIKITA K S. Ray-tracing propagation modeling in urban environment at 140 GHz for 6G wireless networks[J]. IEEE Access, 2023(11):133835-133849. doi:10.1109/ACCESS.2023.3336814. [百度学术]
LEE I S,KIM K W,OH S J. Ray-tracing-based data expansion from limited sub-THz channel measurements in urban street[J]. IEEE Wireless Communications Letters, 2024,13(5):1305-1309. doi:10.1109/LWC.2024.3368273. [百度学术]
ABBASI N A,GOMEZ J L,KONDAVETI R,et al. THz band channel measurements and statistical modeling for urban D2D environments[J]. IEEE Transactions on Wireless Communications, 2023,22(3):1466-1479. doi:10.1109/TWC.2022.3184929. [百度学术]
段夫巧,邱彦衡,毛开,等. 基于无人机的空地信道特性测量系统[J]. 微波学报, 2023,39(3):23-29. [百度学术]
DUAN Fuqiao,QIU Yanheng,MAO Kai,et al. Measurement system of air-ground channel characteristics based on UAV[J]. Journal of Microwaves, 2023,39(3):23-29. doi:10.14183/j.cnki.1005-6122.202303005. [百度学术]
VERDECIA-PEÑA R,GRASES-VALENZUELA A E,ALONSO J I. Propagation characterization based on ray-tracing at 60 GHz band:a typical indoor office scenario and validation measurements[C]// 2023 IEEE the 24th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC). Shanghai,China:IEEE, 2023:346-350. doi:10.1109/ SPAWC 53906.2023.10304469. [百度学术]
AZPILICUETA L,SCHULTZE A,CELAYA-ECHARRI M,et al. Diffuse-scattering-informed geometric channel modeling for THz wireless communications systems[J]. IEEE Transactions on Antennas and Propagation, 2023,71(10):8226-8238. doi:10.1109/TAP.2023.3307868. [百度学术]
LI Yuanbo,WANG Yiqin,CHEN Yi,et al. Channel measurement and analysis in an indoor corridor scenario at 300 GHz[C]// ICC 2022-IEEE International Conference on Communications. [S.l.]:IEEE, 2022:2888-2893. doi:10.1109/ICC45855.2022. 9839013. [百度学术]
WU Y Z,KOKKONIEMI J,HAN C,et al. Interference and coverage analysis for terahertz networks with indoor blockage effects and line-of-sight access point association[J]. IEEE Transactions on Wireless Communications, 2021,20(3):1472-1486. doi:10.1109/TWC.2020.3033825. [百度学术]
ZHANG Yudong,LI Zheng,WANG Junhong,et al. A simplified 2-D ray tracing method for modeling radio wave coverage in tunnel environment[C]// 2022 International Conference on Microwave and Millimeter Wave Technology(ICMMT). Harbin,China:IEEE, 2022:1-3. doi:10.1109/ICMMT55580.2022.10023044. [百度学术]
CUI Z Z,BRISO-RODRÍGUEZ C,GUAN K,et al. Ultra-wideband air-to-ground channel measurements and modeling in hilly environment[C]// ICC 2020-2020 IEEE International Conference on Communications(ICC). Dublin,Ireland:IEEE, 2020: [百度学术]
1-6. doi:10.1109/ICC40277.2020.9148768. [百度学术]
KHAWAJA W,OZDEMIR O,GUVENC I. UAV air-to-ground channel characterization for mmWave systems[C]// 2017 IEEE the 86th Vehicular Technology Conference(VTC-Fall). Toronto,ON,Canada:IEEE, 2017:1-5. doi:10.1109/VTCFall.2017. 8288376. [百度学术]
胡焱,伍启燕,雷霞. 复杂地形中的电波传播损耗预测研究[J]. 微波学报, 2022,38(4):95-100. [百度学术]
HU Yan,WU Qiyan,LEI Xia. Research on propagation loss prediction of radio wave in complex terrain[J]. Journal of Microwaves, 2022,38(4):95-100. doi:10.14183/j.cnki.1005-6122.202204019. [百度学术]
YI Haofan,GUAN Ke,HE Danping,et al. Terahertz wave propagation and channel characterization[J]. Journal on Communications, 2022,43(1):34-48. doi:10.11959/j.issn.1000-436x.2022013. [百度学术]
XING Y C,RAPPAPORT T S. Propagation measurements and path loss models for sub-THz in urban microcells[C]// ICC 2021-IEEE International Conference on Communications. Montreal,QC,Canada:IEEE, 2021:1-6. doi:10.1109/ICC42927. 2021.9500385. [百度学术]
吴强,邓佩佩,陈仁爱,等. 一种基于太赫兹成像的复杂地形自适应定高方法[J]. 太赫兹科学与电子信息学报, 2024,22(6):617-626. [百度学术]
WU Qiang,DENG Peipei,CHEN Ren'ai,et al. An adaptive height measuring method in complex terrain based on terahertz imaging[J]. Journal of Terahertz Science and Electronic Information Technology, 2024,22(6):617-626. doi:10.11805/TKYDA2024091. [百度学术]
SHI Y,ENAMI R,WENSOWITCH J,et al. Measurement-based characterization of LOS and NLOS drone-to-ground channels[C]// 2018 IEEE Wireless Communications and Networking Conference(WCNC). Barcelona,Spain:IEEE, 2018:1-6. doi:10.1109/WCNC.2018.8377104. [百度学术]
CUI Z Z,BRISO-RODRÍGUEZ C,GUAN K,et al. Measurement-based modeling and analysis of UAV air-ground channels at [百度学术]
GHz and 4 GHz[J]. IEEE Antennas and Wireless Propagation Letters, 2019,18(9):1804-1808. doi:10.1109/LAWP.2019. 2930547. [百度学术]
ZHANG Zhaolei,LIU Yu,HUANG Jie,et al. Channel characterization and modeling for 6G UAV-assisted emergency communications in complicated mountainous scenarios[J]. Sensors, 2023,23(11):4998. doi:10.3390/S23114998. [百度学术]
丁鹏辉,王青旺,杨璐,等. 110 GHz频段山地无人机视距通信概率及传播损耗研究[J]. 电子技术应用, 2024,50(7):39-45. [百度学术]
DING Penghui,WANG Qingwang,YANG Lu,et al. Study of UAV line-of-sight communication probability and propagation loss for mountain in 110 GHz band[J]. Application of Electronic Technique, 2024,50(7):39-45. doi:10.16157/j.issn.0258-7998.245109. [百度学术]
HE Danping,AI Bo,GUAN Ke,et al. The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications:a tutorial[J]. IEEE Communications Surveys & Tutorials, 2019,21(1):10-27. doi:10.1109/ COMST.2018.2865724. [百度学术]
YI H F,HE D P,MATHIOPOULOS P T,et al. Ray tracing meets terahertz:challenges and opportunities[J]. IEEE Communications Magazine, 2024,62(2):40-46. doi:10.1109/MCOM.001.2200454. [百度学术]
赵轩. 基于射线追踪法的毫米波室内信道建模研究[J]. 通讯世界, 2020,27(2):95-96. [百度学术]
ZHAO Xuan. Research on millimeter-wave indoor channel modeling based on ray-tracing method[J]. Telecom World, 2020,27(2):95-96. doi:10.3969/j. [百度学术]
issn.1006-4222.2020.02.058. [百度学术]
CUI Zhuangzhuang,GUAN Ke,HE Danping,et al. Propagation modeling for UAV air-to-ground channel over the simple mountain terrain[C]// 2019 IEEE International Conference on Communications Workshops(ICC Workshops). Shanghai,China:IEEE, 2019:1-6. doi:10.1109/ICCW.2019.8756679. [百度学术]
JIA Guiyuan,WU Muqing,ZHAO Min,et al. A 3-D channel model for high-speed railway communications in mountain scenario[C]// The Proceedings of the Second International Conference on Communications,Signal Processing,and Systems. Cham,Switzerland:Springer, 2014:1173-1181. doi:10.1007/978-3-319-00536-2_133. [百度学术]
SUN R Y,MATOLAK D W. Air-ground channel characterization for unmanned aircraft systems part II:hilly and mountainous settings[J]. IEEE Transactions on Vehicular Technology, 2017,66(3):1913-1925. doi:10.1109/TVT.2016. 2585504. [百度学术]
BIANCO G M,GIULIANO R,MARROCCO G, et al. Lora system for search and rescue:path-loss models and procedures in mountain scenarios[J]. IEEE Internet of Things Journal, 2021,8(3):1985-1999. doi:10.1109/JIOT.2020.3017044. [百度学术]