摘要
随着6G技术的不断发展,太赫兹雷达、通信感知一体化逐渐成为电子信息领域的重要研究方向。可编程超表面凭借其重量轻、易共形和动态可调等优势,在太赫兹波束操控方面表现出很高的自由度,因而在通信、成像、雷达等方面具有重要的应用潜力。本文从加载半导体元件的可编程超表面设计理论出发,选取一款高频适用的GaAs变容二极管,构建了一种1 bit数字编码超表面,并对其亚太赫兹电磁响应和波束操控性能进行了表征。结果表明,该超表面阵列在W波段具有宽角度的动态波束赋形和波束扫描能力,实验结果与仿真结果吻合良好。
数字可编程超表面采用二进制数字编码对超表面单元进行数字化表
设计的超表面单元目标频率为94 GHz,单元周期为1 500 μm,通过加载变容二极管实现单元相位可调谐。1 bit反射式单元结构示意图如

图1 超表面单元结构示意图及等效电路图
Fig.1 Schematic of the metasurface cell structure and the equivalent circuit diagram
根据超表面等效电路分析方
此结构选用MACOM公司型号为MAVR-000146‒12030W(MA46H146)的变容二极管,此变容二极管是一款适用于毫米波频率的GaAs倒装芯片变容管,最高可加载25 V的反向偏置电压。在电路仿真软件ADS(Advanced Design System)中对二极管电路模型进行仿真并提取不同电压状态下的S参数。利用商用三维电磁仿真软件CST(Computer Simulation Technology)Microwave Studio 对超表面单元进行建模和仿真优化。选取加载0 V和24 V反向偏置电压下的超表面作为编码“0”和编码“1”,反射系数S11的幅度和相位曲线如

图2 编码0和1反射系数的幅相曲线及相位差
Fig.2 Amplitude-phase curves and phase difference for code 0 and code 1
由
受限于工艺,该超表面设计方案在实际应用中仅能实现单元的逐列控制,因此本文仅讨论超表面在单一维度(x轴)上进行周期排列的情况。对于周期排列的一维列控1 bit相位调控型编码超表面,根据广义斯涅尔定
(1) |
式中:为编码序列在x轴方向的周期长度;为工作波长;n为波束的阶数。根据
(2) |
式中:为第m个单元的相位;为真空中的波矢量;d为单元周期长度;为反射角角度。因此,通过将初始相位定义为0°,可推算出之后每一个单元的相位。在不考虑样品尺寸的情况下,根据
对2种周期编码序列阵列进行仿真,并以全“0”编码状态下的仿真结果作为对照,远场仿真结果如

图3 特定编码全波仿真的归一化远场散射方向图
Fig.3 Normalized far-field scattering patterns from full-wave simulations at specific coding sequences
根据单元及阵列仿真结果制备超表面阵列样品,如

图4 实验样品及远场波束测试装置示意图
Fig.4 Images for experimental sample and far-field beam measurement equipment
首先对以周期编码“0011”状态排布的超表面阵列进行远场测试,测试结果如

图5 不同编码对应的仿真与测试结果
Fig.5 Simulation and test results corresponding to different codes
为评估超表面阵列的电磁波束调控能力,计算了频率为86 GHz时30°、35°、40°、45°四个特定角度对应的4种不同的编码序列,如

图6 不同波束偏折角度对应的编码序列及其对应的实验测试结果
Fig.6 Coding sequences for various deflection angles and their corresponding experimental test results
本文采用具有优异高频响应特性的变容二极管,设计了一种工作在W波段的1 bit列控可编程超表面。仿真结果表明,超表面单元在目标频率具有不小于180°的相位调控范围和宽角度的波束调控能力。在全波仿真基础上制备了阵列规模为16×8的超表面阵列,并对超表面样品在不同编码序列下的远场散射特性进行了实验测试。测试结果表明,该可编程超表面对W波段的反射电磁波具有宽角度的动态调控能力和波束扫描功能。本工作将有效推进W频段内的反射式可编程超表面设计与开发工作,并在亚太赫兹通信与雷达系统中具有潜在的应用价值。
参考文献
CUI Tiejun,QI Meiqing,WAN Xiang,et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light,Science & Applications, 2014,3(10):e218-e218. doi:10.1038/lsa.2014.99. [百度学术]
DELLA-GIOVAMPAOLA C,ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014,13(12):1115-1121. doi:10.1038/nmat4082. [百度学术]
CUI Tiejun,LIU Shuo,ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017,5(15):3644-3668. doi:10.1039/C7TC00548B. [百度学术]
FU Xiaojian,YANG Fei,LIU Chenxi,et al. Terahertz beam steering technologies: from phased arrays to Field-Programmable metasurfaces[J]. Advanced Optical Materials, 2020,8(3):1900628. doi:10.1002/adom.201900628. [百度学术]
YANG Huanhuan,CAO Xiangyu,YANG Fan,et al. A programmable metasurface with dynamic polarization,scattering and focusing control[J]. Scientific Reports, 2016,6(1):35692. doi:10.1038/srep35692. [百度学术]
LIU Yujie,WANG Yu,FU Xiaojian,et al. Toward sub-terahertz: space-time coding metasurface transmitter for wideband wireless communications[J]. Advanced Science, 2023,10(29):2304278. doi:10.1002/advs.202304278. [百度学术]
沈仕远,王元圣,池瑶佳,等. 基于编码超表面的双向太赫兹多波束调控器件[J]. 太赫兹科学与电子信息学报, 2021,19(1):1-6. [百度学术]
SHEN Shiyuan,WANG Yuansheng,CHI Yaojia,et al. Phase transition material based coding metasurface for two-way terahertz beam steering[J]. Journal of Terahertz Science and Electronic Information Technology, 2021,19(1):1-6. doi:10.11805/TKYDA2020090. [百度学术]
LI Lianlin,CUI Tiejun,JI Wei,et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017,8(1):197. doi:10.1038/s41467-017-00164-9. [百度学术]
HU Yueqiang,LI Ling,WANG Yujie,et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 2020,20(2):994-1002. doi:10.1021/acs.nanolett.9b04107. [百度学术]
BASAR E,DI-RENZO M,DE-ROSNY J,et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019(7):116753-116773. doi:10.1109/ACCESS.2019.2935192. [百度学术]
TANG Wankai,CHEN Mingzheng,CHEN Xiangyu,et al. Wireless communications with reconfigurable intelligent surface:path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021,20(1):421-439. doi: 10.1109/TWC.2020.3024887. [百度学术]
KISHK M A,ALOUINI M S. Exploiting randomly located blockages for large-scale deployment of intelligent surfaces[J]. IEEE Journal on Selected Areas in Communications, 2021,39(4):1043-1056. doi:10.1109/JSAC.2020.3018808. [百度学术]
KAMODA H,IWASAKI T,TSUMOCHI J,et al. 60 GHz electronically reconfigurable large reflectarray using single-bit phase shifters[J]. IEEE Transactions on Antennas and Propagation, 2011,59(7):2524-2531. doi:10.1109/TAP.2011.2152338. [百度学术]
HUANG Cheng,SUN Bo,PAN Wenbo,et al. Dynamical beam manipulation based on 2 bit digitally-controlled coding metasurface[J]. Scientific Reports, 2017(7):42302. doi:10.1038/srep42302. [百度学术]
YU N F,GENEVET P,KATS M A,et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011,334(6054):333-337. doi:10.1126/science.1210713. [百度学术]