文章编号: 1672-2892(2011)03-0373-06

二维圆柱迭代 Robin 边界条件的计算

宋志强

(复旦大学 通信科学与工程系, 上海 200433)

摘 要: 迭代 Robin 边界条件算法应用于二维电大尺寸目标时,会遇到迭代不收敛的问题,通 过加大虚拟边界与散射体边界的距离可以解决该问题,文中通过对入射波的柱面波展开得到了收 敛系数关于间距和散射体半径的复杂的系列公式,根据公式所得结果用最小二乘法拟合,得到了 散射体边界与虚拟边界间距设置的简洁的经验公式,并给出间距设置的一般原则。

关键词: 迭代 Robin 边界条件; 有限元; 电大尺寸; Hankel 函数

中图分类号: TN957; O441 文献标识码: A

Iterative Robin Boundary Condition calculation for 2-D targets

SONG Zhi-qiang

(Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China)

Abstract: The Iterative Robin Boundary Condition(IRBC) has many advantages: the boundary can be set close to the scatterer; the internal resonance can be eliminated; maintaining the finite element system matrix symmetrical and sparse; the Robin Boundary needn't to be set specially; it can be used in calculating the concave volume scattering. But when the IRBC is used to compute the 2-D electrically large targets, the iteration will not be convergent, and this can be settled by increasing the distance between the fictitious boundary and the scatter boundary. In this paper, a series of complex formulas of convergence coefficient about the distance and the scatterer radius are obtained by decomposing the incident wave into a series of cylindrical waves. Fitting the data obtained from the series of formulas, the succinct empirical formula is derived, which has provided a rule about how to set the distance between the fictitious boundary and the scatter boundary.

Key words: Iterative Robin Boundary Condition; Finite Element Method(FEM); electrically large targets; Hankel function

迭代 Robin 边界条件(IRBC)算法是一种可以很好 地计算开域电磁散射问题的数值计算方法。它通过引 入闭合虚拟边界包围散射体,预先假定该边界上的残 值,然后不断迭代修正,直至场分布收敛到准确值^[1-2]。 IRBC 算法应用于二维电大尺寸目标时,会遇到迭代不 收敛的问题,通过加大虚拟边界与散射体边界的距离 可以解决收敛问题。文中根据公式推导结果拟合了散 射体边界与虚拟边界间距设置的原则,并给出经验公 式,再通过一系列目标的计算对算法加以验证。

1 基本原理

应用IRBC求解二维散射问题如图1所示,考虑自由空间中沿y方向无限延伸的柱体,入射场为E,,散射柱体

边界为 Γ_c , IRBC所在的虚拟边界为 Γ_t , IRBC的积分路径为 Γ'_t , Γ_t 与 Γ'_t 间距为D, Γ_c 与 Γ'_t 间距为T。

在虚拟边界 Γ_t 上有Robin边界条件:

$$\Re(\phi) = \frac{\partial \phi(\overline{r})}{\partial n} + jk_0 \phi(\overline{r}) = \psi(\overline{r})$$
(1)

式中: ℜ是Robin边界条件的算子; $\phi(\bar{r})$ 是散射场; *n*是边界 Γ_t 上的外法向; $k_0 = \omega(\varepsilon_0 \mu_0)^{1/2}$ 是自由空间波数; 残 值 $\psi(\bar{r})$ 未知, 一般令其猜想初值为0。

离散由散射体表面 Γ_c 和虚拟边界 Γ_t 所围成的区域 Ω ,求解该Robin边界条件下的有限元泛函方程:

$$F_{t}(\phi) = \frac{1}{2} \iint_{\Omega} \left[\left(\frac{\partial \phi}{\partial x} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} - k_{0}^{2} \phi^{2} \right] \mathrm{d}\Omega' + \int_{\Gamma_{t}} \left(\frac{jk_{0}}{2} \phi^{2} - \phi \psi \right) \mathrm{d}\Gamma'$$
(2)

可得到求解区域 Ω 内的散射场分布。将Robin边界条件算子代入电场积分方程,可以由积分路径 Γ'_t 上的场分布计算 Γ_t 上下一迭代步的Robin边界条件值,例如在 Γ_t 上某点 \overline{r} :

$$\psi(\overline{r}) = \int_{\Gamma_t'} \left(\phi(\overline{r}') \Re \left[\frac{\partial G(\overline{r}, \overline{r}')}{\partial n'} \right] - \frac{\partial \phi(\overline{r}')}{\partial n'} \Re \left[G(\overline{r}, \overline{r}') \right] \right) \mathrm{d}\Gamma'$$
(3)

式中 $\partial/\partial n'$ 为边界 Γ'_t 上外法向导数。由于 Γ_t 与 Γ'_t 等间距设置,场点r与源点r'不会重合。G是二维自由空间Green 函数:

$$G(\bar{r},\bar{r}') = -\frac{1}{4} j H_0^{(2)}(k_0 | \bar{r} - \bar{r}' |)$$
(4)

式中 $H_0^{(2)}$ 是第2类零阶Hankel函数。下一迭代步由求解新Robin边界条件下的有限元方程(2)开始,然后再由方程(3) 得到新的Robin边界条件值,如此循环,直到区域 Ω 内散射场收敛到稳定值。

2 计算分析

随着散射体尺寸的增大,虚拟边界与散射体边界的间距也要相应增大,下面以导体圆柱、TM 波入射为例分 析散射体边界与虚拟边界的间距 *d* 的设置问题,在柱坐标系 *r*,*φ*,*z* 中,圆柱轴向与 *z* 轴重合,入射波可以分解为 一系列柱面波。

$$\phi_{\rm inc} = \sum_{n=-\infty}^{+\infty} a_n J_n(k_0 r) e^{jn\phi}$$
⁽⁵⁾

式中: J_n 为第 1 类 n 阶 Bessel 函数; a_n 为与入射波相关的复系数,因为入射柱面波的反射波为对应阶数的外行 柱面波,散射波形式如下:

$$\phi_{s} = \sum_{n=-\infty}^{+\infty} a_{n} b_{n} H_{n}^{(2)}(k_{0} r) e^{jn\varphi}$$
(6)

式中: $H_n^{(2)}$ 为第 2 类 n 阶 Hankel 函数; b_n 为复系数,由式(7)给出^[3]:

$$b_n = -\frac{J_n(k_0 R)}{H_n^{(2)}(k_0 R)}$$
(TM) (7)

式中: R为圆柱半径; 圆柱边界为 Γ_c ; 虚拟边界 Γ_t 紧贴散射体设置,其半径为 $R_t = R + d(d > 0)$, d为散射体边 界与虚拟边界间距。在边界 Γ_t 上初始的 Robin 边界条件如下,将其用关于 φ 的 Fourier 级数展开,可得下式^[4-5]:

$$\Re(\phi) = \beta \frac{\partial \phi}{\partial n} + k(r)\phi = \psi^{(0)} = \sum_{n=-\infty}^{+\infty} \mu_n^{(0)} e^{jn\phi}$$
(8)

当 β = 0, *k*(\bar{r}) ≠ 0 时,得到 Dirichlet 边界条件,在散射体表面,Dirichlet 边界条件对应 TM 极化波。Helmholtz 方程如下:

$$\nabla\left(\frac{1}{\alpha}\nabla\phi\right) + k_0^2\eta\phi = 0\tag{9}$$

在求解区域 Ω 内 Helmholtz 方程的解为式(5)。

$$\phi^{(0)}(r,\phi) = \sum_{n=-\infty}^{+\infty} \mu_n^{(0)} \tau_n(r) e^{jn\phi}$$
(10)

函数 $\tau_{n}(r)$ 为式(11)一维边值问题的解:

$$\begin{cases} \frac{1}{\alpha} \frac{d^{2} \tau_{n}}{dr^{2}} + \frac{1}{\alpha r} \frac{d \tau_{n}}{dr} + (k_{0}^{2} \eta - \frac{n^{2}}{r^{2}}) \tau_{n} = 0, \quad r \in (R, R_{t}) \\ \left\{ \begin{bmatrix} \beta \frac{d \tau_{n}(r)}{dr} + k(r) \tau_{n}(r) \end{bmatrix}_{r=R_{t}} = 1 \\ \tau_{n}(R) = 0, \quad \text{(TM)} \\ \frac{d \tau_{n}(r)}{dr} \Big|_{r=R} = 0, \quad \text{(TE)} \end{cases}$$
(11)

令积分路径 Γ'_t 和散射体边界 Γ_c 重合,新的 Robin 边界条件值 $\psi^{(1)}$ 由散射场积分方程式(3)求出,将 $\psi^{(1)}$ 用 Fourier 级数展开,代入散射场积分方程,并将 $\phi^{(0)}$ 的 Fourier 级数形式代入积分方程,得:

$$\sum_{n=-\infty}^{+\infty} \mu_n^{(1)} e^{jn\varphi} = \int_{\Gamma_l'} \left(\sum_{n=-\infty}^{+\infty} \mu_n^{(0)} \tau_n(r) e^{jn\varphi} \Re\left[\frac{\partial G(\overline{r},\overline{r'})}{\partial n'}\right] - \frac{\partial \left[\sum_{n=-\infty}^{+\infty} \mu_n^{(0)} \tau_n(r) e^{jn\varphi}\right]}{\partial n'} \Re\left[G(\overline{r},\overline{r'})\right] \right) d\Gamma'$$
(12)

进一步

$$\sum_{n=-\infty}^{+\infty} \mu_n^{(1)} \mathrm{e}^{\mathrm{j} n \varphi} = \sum_{n=-\infty}^{+\infty} \int_{\Gamma'_l} \left(\mu_n^{(0)} \tau_n(r) \mathrm{e}^{\mathrm{j} n \varphi} \Re \left[\frac{\partial G(\overline{r}, \overline{r'})}{\partial n'} \right] - \frac{\partial (\mu_n^{(0)} \tau_n(r) \mathrm{e}^{\mathrm{j} n \varphi})}{\partial n'} \Re \left[G(\overline{r}, \overline{r'}) \right] \right) \mathrm{d}\Gamma'$$
(13)

由式(13)可以看出 $\psi^{(1)}$ 的 Fourier 级数的第 n项只和 $\psi^{(0)}$ 的第 n项有关,即:

$$\mu_n^{(1)} = \gamma_n + \rho_n \mu_n^{(0)} \tag{14}$$

其中

$$\gamma_n = a_n \left[\beta dJ_n(k_0 r)/dr + k(r)J_n(k_0 r) \right] \Big|_{r=R_t}$$
(15)

$$\rho_n = \left(1 + \frac{1}{b_n} \left[\frac{\beta dJ_n(k_0 r)/dr + k(r)J_n(k_0 r)}{\beta dH_n^{(2)}(k_0 r)/dr + k(r)H_n^{(2)}(k_0 r)}\right]_{r=R_t}\right)^{-1}$$
(16)

为了更有效地分析迭代收敛情况,在虚拟边界 Γ_t 上引入实际 Robin 边界条件(迭代稳定之后的 Robin 边界条件,即若设置迭代初始边界条件 $\psi^{(0)} = \psi_t$,则 $\psi^{(1)} = \psi_t$)并将其用 Fourier 级数展开:

$$\psi_t = \sum_{n=-\infty}^{+\infty} \mu_{tn} e^{jn\phi}$$
(17)

由式 $\mu_n^{(1)} = \gamma_n + \rho_n \mu_n^{(0)}$ 可以推得 $\mu_{tn} = \gamma_n + \rho_n \mu_{tn}$, 将两式相减得: $\mu_n^{(1)} - \mu_{tn} = \rho_n (\mu_n^{(0)} - \mu_{tn})$

$$\mu_n^{(1)} - \mu_m = \rho_n (\mu_n^{(0)} - \mu_m) \tag{18}$$

进一步可以得到:

$$\mu_n^{(m)} - \mu_{tn} = \rho_n^m (\mu_n^{(0)} - \mu_{tn})$$
⁽¹⁹⁾

从该式可以明显看出 ρ_n 即为收敛系数,只要对于任意n, $|\rho_n| < 1$,那么不论初值为多少,最后迭代总会收敛 到稳定值。不失一般性,可以令 $\beta = 1$,且令 $k(r) = jk_0$ 以使 $|\rho_n|$ 尽可能小,而且简单,易于操作。则:

$$\rho_n = \left(1 + \frac{1}{b_n} \left[\frac{\mathrm{d}J_n(k_0 r)/\mathrm{d}r + jk_0 J_n(k_0 r)}{\mathrm{d}H_n^{(2)}(k_0 r)/\mathrm{d}r + jk_0 H_n^{(2)}(k_0 r)}\right] r = R_t \right)^{-1}$$
(20)

将 b_n 代人 ρ_n 表达式,并且应用 Bessel 函数和 Hankel 函数的递推形式:

$$J'_{n}(x) = -\frac{n}{x}J_{n}(x) - J_{n+1}(x)$$
(21)

$$H_n^{(2)'}(x) = -\frac{n}{x} H_n^{(2)}(x) - H_{n+1}^{(2)}(x)$$
(22)

65

−1

dmin(TM)

Fig.2 Relationship diagram between d and cylinder radius R(TM)

图 2 间距 d 和柱体半径 R 关系图(TM)

$$\rho_n = \left(1 - \frac{H_n^{(2)}(k_0 R)}{J_n(k_0 R)} \left[\frac{\left[n + j(k_0 R + k_0 d)\right] J_n(k_0 R + k_0 d) - (k_0 R + k_0 d) J_{n+1}(k_0 R + k_0 d)}{\left[n + j(k_0 R + k_0 d)\right] H_n^{(2)}(k_0 R + k_0 d) - (k_0 R + k_0 d) H_{n+1}^{(2)}(k_0 R + k_0 d)} \right] \right)^{-1}$$

$$(23)$$

1.6

1.4 1.2

1.0

0.6 0.4

0.2

⁰10

D 0.8

令 $|\rho_n| = 1$, 就可以得到 TM 极化在此约束条件下间 距 *d* 和柱体半径 *R* 的关系,其曲线如图 2 所示,图中 *n* 的范围为 0~55,横坐标为 k_0R ,纵坐标为 k_0d 。 $d_{\min} = \max(d_n)(n$ 取任意整数),只要 $d > d_{\min}, \mu |\rho_n| < 1$ 。

通过对图 2 中不同 n 时最大值点采用最小二乘法进行曲线拟合,可以得到 TM 极化时 k₀d_{min} 和 k₀R 的近似公式如下:

$$k_0 d_{\min} = 0.462 (k_0 R - 11.2)^{0.389} - 0.52$$
(24)

采用近似公式所得结果与实际结果之间的对比图,如图 3 所示,由图中可以看出两者吻合较好,其标准误 差为 σ = 0.00136。

现在给出 TM 极化时的 d_{min} 取值公式:

从理论上来讲,只要令间距 $d > d_{\min}$ 即可使 $|\rho_n| < 1$, 迭代收敛,但是合理的设置间距d可以使得 $|\rho_n|$ 尽可能小, 那样迭代次数可以减少,从而更快地收敛。如果设置d仅 仅略大于 d_{\min} ,那么会使某一些 $|\rho_n|$ 仅仅略小于 1,从而使 得对应的 $\mu_n^{(m)} - \mu_m = \rho_n^m (\mu_n^{(0)} - \mu_m)$ 迭代收敛缓慢,下面以 TM 极化, $k_0 R = 50$ 为例来详细说明: $k_0 R = 50$,则 $k_0 d_{\min} = 1.397333$,令n的取值范围为 $0 \sim 100$, $k_0 d$ 的取值 范围为 $k_0 d_{\min} + 0.01 \le k_0 d \le 10$ 。表 1 为 $k_0 R = 50$ 时,针对 不同的n, ρ_n 分别取最小值与最大值时对应的 $k_0 d$ 的值。

表 1 ρ_n 最值表(k_0R =50) Table 1 Chart of most value about $\rho_1(k_0R$ =50)

n	$k_0 d_n$ (min)	ρ_n (min)	$k_0 d_n (\max)$	$\left \rho_n \right (\max)$	$\left \rho_n \right (\min) - \left \rho_n \right (\max)$
0	9.907 33	0.064 36	1.407 33	0.069 41	0.005 050
8	1.407 33	0.131 38	9.907 33	0.183 62	0.052 240
16	1.707 33	0.047 48	9.907 33	0.056 18	0.008 700
24	5.507 33	0.112 42	7.407 33	0.120 40	0.007 980
32	9.907 33	0.433 49	4.107 33	0.500 02	0.066 530
40	7.407 33	0.536 13	4.907 33	0.674 30	0.138 170
48	9.907 33	0.613 14	1.407 33	0.997 10	0.383 960
50	5.307 33	0.537 76	1.407 33	0.935 97	0.398 210
56	9.907 33	0.078 18	1.407 33	0.565 80	0.487 620
64	9.907 33	0.003 04	1.407 33	0.346 52	0.343 480
72	9.907 33	2.50×10 ⁻⁴	1.407 33	0.245 61	0.245 360
80	9.907 33	3.09×10 ⁻⁴	1.407 33	0.182 25	0.182 219
88	9.907 33	4.61×10 ⁻⁶	1.407 33	0.138 21	0.138 205
96	9.907 33	7.66×10 ⁻⁷	1.407 33	0.106 13	0.106 129
100	9.907 33	3.21×10 ⁻⁷	1.407 33	0.093 30	0.093 300

分析表 1 可知, 对于 *n*=50 或者 *n*=48, $k_0 d_n = k_0 d_{\min} + 0.01 = 1.407 33$ 时(即 $k_0 d$ 略大于 $k_0 d_{\min}$), 其对应的 $|\rho_n|$ 分别 为: $|\rho_{50}| = 0.935 97$, $|\rho_{48}| = 0.9971$, 会使对应的 $\mu_n^{(m)} - \mu_m = \rho_n^m (\mu_n^{(0)} - \mu_m)$ 的迭代收敛非常缓慢。

当 *n* ≤ 32 (即 *n* 相对 *k*₀*R* 较小)时, $\|\rho_n|(\min) - |\rho_n|(\max)| << 1$, 即无论 *k*₀*d*_n 取什么值, $|\rho_n|$ 都不会有大的波动。 当 *n* ≥ 40 (即 *n* 与 *k*₀*R* 接近或 *n* > *k*₀*R*)时, $\|\rho_n|(\min) - |\rho_n|(\max)|$ 较大,这时应该选择 *k*₀*d*_n = *k*₀*d*_n(min), 使得 $|\rho_n|$ 尽可能小。综合考虑, *k*₀*d*_n 的选择应该以 *n* 较大时为主。

表 1 中 *n* ≥ 40 时, $k_0 d_n(\min) \ge 5.307\,33$; *n* ≥ 56 时, $k_0 d_n(\min) = 9.907\,33$; 一般来讲,随着 *n* 的增大, $k_0 d_n$ 越大, $|\rho_n|$ 越小。因为 *n* 较小时, $|\rho_n|$ 差别不大,所以总体上来说选择的 $k_0 d_n$ 越大, $|\rho_n|$ 就越小,所需要的迭代次数 就越少。但是 $k_0 d_n$ 的增大会带来另一个问题,就是计算区域的增大,相应的剖分单元数需要增多,又会导致计算 时间的延长,所以 *d* 既不能太大,也不能仅仅略大于 d_{\min} 。

对于 R < 10的小尺寸目标计算,可以直接把 d 设置为 d = 0.3;对于 10 < R < 50 中等尺寸目标的计算,剖分单 元不是很多,计算时间也较短,在设置虚拟边界与散射体边界的间距 d 时,可以使 d_{min} + 0.1 < d < 2d_{min},这样不 仅不会对准确度有太大影响,而且可以使迭代次数减少,使收敛加快;对于大尺寸目标,剖分单元太多会使每次 计算耗费大量时间,这样在控制剖分单元数目的前提下,为保证计算准确度,必须使虚拟边界尽量紧贴散射体设 置,这时一般设置 d_{min} + 0.1 < d < d_{min} + 0.4。

3 数值算例

为了检验该方法的可行性与精确性,本文用不同范围的圆柱体做了验证。 下面的算例中,入射波都为 TM 平面波,入射角均为 0°^[6-8]。

1) 小范围圆柱

散射柱体半径为 R, R,T,D 如图 4 所示。 $R=1 \lambda, \lambda=1 \text{ m}, T=0.1 \text{ m}, D=0.2 \text{ m},$ 剖分单元为 1 000。迭代完全稳定之后,迭代 Robin 边界条件计算与级数解精 确计算结果对比如图 5 所示。

Fig.4 Schematic diagram of cylinder 图 4 圆柱示意图

2) 中范围圆柱

R=10 λ,λ=1 m,T=0.1 m,D=0.8 m, 剖分单元为 3 000。迭代完全稳定之后,采用迭代 Robin 边界条件计算与级数解精确计算准确度对比如图 6 所示。

3) 大范围圆柱

R=100 λ,λ=1 m,*T*=0.1 m,*D*=1.0 m, 剖分单元为 12 000。 迭代完全稳定之后,采用迭代 Robin 边界条件与级数解精 确计算准确度对比如图 7 所示。

4) 半月柱

散射柱体为半月形柱, *R*,*r*,*T*,D 如图 8 所示。剖分单元 为 6 000, *T*=0.1 m,*D*=0.6 m,*R*=100 m,*r*=11.8 m。迭代完全 稳定之后,迭代 Robin 边界条件计算与有限元边界元计算 结果对比如图 9 所示

4 结论

本文首先介绍了 IRBC 的基本原理,然后通过级数展开、公式推导得到了圆柱体边界设置公式,并结合实际 计算情况给出边界设置的一般原则。最后利用 IRBC 求解不同电尺寸、不同形状的柱体,并且根据边界设置公式 和一般原则来设置边界间距,使得不同电尺寸、不同形状的目标计算都收敛而且与精确解之间的误差非常小。

参考文献:

- Alfonzetti S,Borzi G,Salerno N. An Iterative Solution to Scattering from Cavity-Backed Apertures in a Perfectly Conducting Wedge[J]. IEEE transactions on magnetics, 1998,34(5):2704–2707.
- [2] Alfonzetti S,Borzi G,Salerno N. A Generalization of the Charge Iteration Procedure[J]. IEEE transactions on magnetics, 1997,33(2):1204-1208.
- [3] 孙玉香,许勇. Bessel函数近似解法比较[J]. 合肥工业大学学报, 2008,31(5):828-831.
- [4] Edward J Rothwell. Exponential Approximations of the Bessel Functions, $I_{0,1}(x)$, $J_{0,1}(x)$, $Y_0(x)$ and $H_0^{1,2}(x)$, with Applications to Electromagnetic Scattering, Radiation and Diffraction[J]. IEEE antennas and propagation magazine, 2009,51(3):138–147.
- [5] 向 征,王桢霖,刘兴钊.干涉合成孔径雷达多层次数据仿真[J]. 信息与电子工程, 2010,8(3):281-285. (XIANG Zheng, WANG Zhenlin,LIU Xingzhao. Multilevel data simulation of the interferometric Synthetic Aperture Radar[J]. Information and Electronic Engineering, 2010,8(3):281-285.)
- [6] 李源. 基于均方误差的逆合成孔径雷达干扰效果评估[J]. 信息与电子工程, 2008,6(5):342-345. (LI Yuan. An Evaluation Method of Jamming Effect on Inverse Synthetic Aperture[J]. Information and Electronic Engineering, 2008,6(5):342-345.)
- [7] Edward J Rothwell. Exponential Approximations of the Bessel Functions $I_{0,1}(x), J_{0,1}(x), Y_0(x)$ and $H_0^{1,2}(x)$, with Applications to Electromagnetic Scattering, Radiation and Diffraction[J]. Electronic Letters, 1996, 32(9):1768–1769.
- [8] Peng Liu, JIN Yaqiu. An FEM Approach with FFT Accelerated Iterative Robin Boundary Condition for Electromagnetic Scattering of a Target With Strong or Weak Coupled Underlying Randomly Rough Surface[J]. IEEE Transactions on antennas and propagation, 2005,53(12):4137-4144.

作者简介:

宋志强(1983-),男,内蒙古人,硕士,主要研究方向为电磁场理论与仿真技术、有限元方法在电磁 散射计算中的应用.email:qingniliang@163.com.