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Abstract：THz Radar Cross Section(RCS) measurement setup based on THz Time Domain Spectroscopy 

(TDS) is built to provide large scaled targets test ability in recent years. As calibrations, the metal plates 

and dihedrons are used in our experiments. The measurements are performed in a monostatic terahertz 

time-domain setup. The author proposed time domain and frequency domain calibration methods for 

angular RCS of calibrations, comparing the measurements with the theory to verify the ability of the time 

domain measurement setup. 
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1  Introduction 

Radar Cross Section(RCS) measurement in THz band is attractive due to large scale factor in the higher frequencies[1-2]. 

Kinds of experiment setups are built to evaluate the scattering properties of military targets like tanks, aircrafts and 

warships etc[3-5]. Submilimeter-wave Technology Laboratory(STL) at UMass Lowell has developed 1.56 THz full 

polarimetric compact range using two far-infrared lasers to pump the THz transitions in the molecular gases 

difluoromethane and methanol. The output THz beam with Gaussian modes is typically 100 mW of power and the noise 

floor is about -65 dBsm[6]. The bandwidth is 10-18 GHz produced by microwave sweeper. The RCS and International 

Society for Astrological Research(ISAR) imagery of complex target simulator are measured and compared to numerical 

predictions to demonstrate the experimental ability[7]. Harbin Institute of Technology proposed a 2.5 THz measurement 

setup using only one THz gas laser to detect the magnitude of scattering signals without phase information[8]. 

Three kinds of THz RCS measurement technologies, viz. microwave up-conversion, laser down-conversion and terahertz 

time-domain spectrum. Microwave up-conversion can be used for low-frequency dual-station test. Laser down-conversion 

has a single frequency point and cannot obtain the RCS of a wide spectrum. There are also solid RCS systems in the lower 

THz range which using cascade multiplier chains and vector network analyzer to cover frequencies below about 600 GHz. 

The measured RCS and ISAR imagery are calibrated by metallic plate and dihedron etc in the frequency domain like the 

microwave regime. But the above systems cannot work at high frequencies and provide broad bandwidth simultaneously. 

Then time domain THz bistatic RCS measurement setups which consist of broadband emitter are proposed for high 

frequencies[9]. Based on the optical pump and optical probe coherent setup, time profiles of backscattering THz pulses are 

recorded. Though the RCS and ISAR imagery of metallic plate and scaled models are tested, there still lacks of high 

angular resolution RCS results of large targets with calibration. 

In this paper, we propose time domain and frequency domain calibration methods for angular RCS of metallic plate and 

dihedron based on the measurement results of a monostatic THz RCS time domain setup. 

2  Experiment setup 

A monostatic terahertz time domain RCS measurement setup is built to record the reflected by the target model. The 

traditional THz time-domain spectroscopy technology mainly uses point illumination targets for measurement, while the 
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terahertz time-domain spectroscopy RCS measurement system ensures full illumination of the target[10]. Secondly, the RCS 

measurement system requires that the THz wave reflected by the target model coincides with the THz incident wave to 

achieve monostatic RCS measurement, whereas the conventional reflective terahertz time-domain spectroscopy system 

emits and receives signals at a certain angle. The beam splitter of monostatic system will lose the power of the terahertz 

wave, resulting in a lower signal to noise ratio. 

THz pulses from the backscattering surface of targets is shown in Fig.1[11]. The laser beam outputted from the 

femto-second laser with central wavelength 800 nm is split 

into bump beam and probe beam by beam splitter. The 

bump beam is incident on the THz wave generator which 

consists of photoconductive antenna and off-axis parabolic 

lens. Then the collimated THz beam illuminates targets 

which locate at the high precision rotator uniformly. The 

probe beam is phase retarded by time delay line and then 

overlapped with THz beam at the surface of THz detector. 

The silicon plate is used as THz beam splitter which 

converts the angle between illuminating beam and reflect 

beam to 0. 

3  Experimental results of RCS measurement of metallic plates and dihedrons 

3.1 Sample preparation 

Metallic targets with analytical RCS like spheres, plates and dihedrons which are shown in Fig.2 are usually fabricated 

for calibration[12-13]. In the THz regime, surface roughness of targets plays significant roles on the electromagnetic 

scattering besides the geometry of targets due to the comparable wavelength of incident beams. According to Rayleigh 

criterion, the RCS of targets surfaces need to be smaller than λ/8.  

The surfaces of targets are carefully polished and positioned at the low reflectivity holder made of polyethylene. 
 

   
(a) metallic sphere                          (b) dihedron                 (c) plate with polished surface 

Fig.2 Different metallic targets 

3.2 Calibration methods in time domain and frequency domain 

In the measurements, the reflected THz pulse signals of targets and background are recorded. The targets signals need 

to be calibrated by comparing to the relative amplitude of a selected stander target detected by the same THz TDS setup[2]. 

At the desired frequency, the frequency domain RCS can be defined as the follow[14]: 
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where  tgtE  ,  calE  and  bgE  are the Fourier transform of time domain signals of targets, calibrated target and 

background.  cal   is the known RCS value of calibration target at the desired frequency. 

The maximum value of angular RCS of a polished metallic plate when the surface of plate is perpendicular to LOS is 

used as known value. It can be calculated as the following equation. 
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Fig.1 THz-TDS RCS monostatic setup 
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where A is the area of rectangular plate surface, λ is the wavelength of the illuminating frequency. 

The value of angular RCS of a polished metallic dihedron can be calculated as the following equation. 
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Where a  is the length of metallic dihedron, λ is the wavelength of the illuminating frequency. 

3.3 Results of the measurement 

3.3.1The frequency-domain measurement of terahertz signal source 

The THz pulse time-domain signal reflected 

from a silver mirror at one azimuth angle is 

shown in Fig.3. The frequency domain test 

results of the time domain signal which is 

shown in Fig.4 can be obtained by Fourier 

transform. It shows the spectrum range of the 

terahertz source is 0.1-3 THz and the 

magnitude at 0.7 THz and 1.7 THz 

significantly shift down. This is due to the 

absorption of the water vapor. 

3.3.2Angular scattering of metallic sphere 

The THz pulse signals reflected from a 

metallic sphere with diameter of 7 cm at varied azimuth angles 

are shown in Fig.5. It shows the time domain profiles are 

slightly different due to the position precision. But the signal 

noise ratio is too low to be calibration reference. 

3.3.3Angular frequency domain RCS of metallic plates 

The azimuth scattering signals of metallic rectangular 

plates with width of 5 cm are measured by using high 

precision controllable rotator. The angle resolution of rotator 

is 0.05º which is smaller than the main lobe width of RCS of 

plate at the high THz frequencies. 

In the measurement, the position of plates where the 

magnitude of reflect pulse is the highest is sought and defined 

as the origin of azimuth angle and elevation angle. 

Fig.6 The calibrated RCS value of plate with width of 5 cm 

From Fig.6, we can see the value and trend around main lobe of measured RCS of metallic plate agree with the theory 

results in the lower THz regime. At higher frequencies, the measured RCS at large azimuth angle is above the theory 
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Fig.3 THz pulse time-domain signal        Fig.4 Frequency domain test results 
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results about 20 dB. This is due to the limited dynamic range of the system. The width of lobes are broadened and the 

profiles are asymmetrical around 0º. This is due to the non-uniformity of the THz wave. 

3.3.4Angular frequency domain RCS of metallic dihedron 

The azimuth scattering signals of metallic rectangular dihedrons with width of 5 cm are measured by using high 

precision controllable rotator. The angle resolution of rotator is 2º from 0º to 90º. 

 
Fig.7 Calibrated RCS value of dihedron with width of 5 cm 

From Fig.7, we can see that the value and mild trend of measured RCS of metallic dihedron agree with the theory results 

in the lower THz regime and the value of measured RCS drops quickly when azimuth angle is 90º. The measured RCS at 

each azimuth angle is above the theory results about 5-10 dB. The variation trend of measured RCS is not consistent with 

the trend of the variation of the adjacent azimuth angle at each frequency from 24ºto 34º. This is due to the change of the 

photoelectric resistance of the system. Additionally, the center of the rotating shaft and the center of the sample are not 

completely overlapped.  

4  Conclusion 

In this paper, the monostatic THz time domain radar cross section measurement setup is built to detect electromagnetic 

scattering properties of targets. The RCS of plates and dihedrons at desired frequency are retrieved from the time domain 

signals and calibrated with the theoretical values. The high angular resolution RCS of metallic plate and high range RCS of 

dihedrons show the ability of the time domain measurement setup. 
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