文章检索

  • 检索
  • 检索词:
  • 高级检索
您是今天第 853位访问者
您是第 7466400 位访问者
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5137次   下载 2738 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于距离度量学习的DCT域JPEG图像检索
吕清秀, 李弼程, 高毫林
作者单位
吕清秀 Institute of Information System EngineeringInformation Engineering UniversityZhengzhou Henan 450002China 
李弼程 Institute of Information System EngineeringInformation Engineering UniversityZhengzhou Henan 450002China 
高毫林 Institute of Information System EngineeringInformation Engineering UniversityZhengzhou Henan 450002China 
摘要:
由于特征有限,传统基于欧式距离的压缩域检索性能并不理想。本文引入距离度量学习技术,研究压缩域图像检索,提出了一种基于距离度量学习的离散余弦变换(DCT)域联合图像专家小组(JPEG)图像检索方法。首先,提出了一种更有效的DCT域特征提取方法;其次,运用距离度量学习技术训练出一个更加有效的度量矩阵进行检索。在Corel5000上的图像检索实验表明,新方法有效提高了检索准确度。
关键词:  距离度量学习  图像检索  离散余弦变换域  联合图像专家小组图像
DOI:
分类号:
基金项目:全军军事学研究生课题资助项目(YJS1062)
JPEG images retrieval in DCT domain based on Distance Metric Learning
LV Qing-xiu, LI Bi-cheng, GAO Hao-lin
Institute of Information System Engineering,Information Engineering University,Zhengzhou Henan 450002,China
Abstract:
Due to limited features extracted from compression domain, the conventional Euclidean distance based retrieval performance in compressed-domain is not satisfactory. The Distance Metric Learning(DML) is introduced to compressed-domain images retrieval and a DML based Discrete Cosine Transform(DCT) domain retrieval for Joint Photographic Experts Group(JPEG) images is developed. Firstly, we propose a more effective DCT domain features extraction method, and then the DML is applied to train a more efficient metric matrix for retrieval. Retrieval experiment on Corel5000 images database demonstrates that the approach proposed can effectively improve the retrieval accuracy.
Key words:  Distance Metric Learning  images retrieval  Discrete Cosine Transform domain  Joint Photographic Experts Group

分享按钮