文章检索

  • 检索
  • 检索词:
  • 高级检索
您是今天第 489位访问者
您是第 3481444 位访问者
正切形非线性调频信号压缩感知
Construction of sparse dictionary for tangential NLFM signals based on compressed sensing
投稿时间:2016-08-24  修订日期:2016-10-20
中文关键词:调制法  正切形非线性调频  压缩感知  稀疏表示  重构
英文关键词:modulation method  tangential nonlinear frequency modulation  compressed sensing  sparse representation  reconstruction
基金项目:
作者单位
陈 旗 1.Department of Electronics & Information EngineeringHUSTWuhan Hubei 430033China2.Electronic Engineering CollegeNaval University of EngineeringWuhan Hubei 430033China 
曹汉强 Department of Electronics & Information EngineeringHUSTWuhan Hubei 430033 
左 炜 Electronic Engineering CollegeNaval University of EngineeringWuhan Hubei 430033China 
摘要点击次数: 373
全文下载次数: 280
中文摘要:
      为了通过一组线性测量值重建原始信号,并以低于奈奎斯特采样频率的速率采样,开展本研究。对于线性调频信号,分数阶傅里叶变换是在线性调频信号基上稀疏分解信号,因此采用离散分数阶傅里叶变换的变换矩阵构造正交基字典矩阵,通过调整调制参数(调制法)寻找最佳稀疏基,可以较好地稀疏表示线性调频信号。同理,采用调制法寻找正切形非线性调频信号的最佳稀疏基,对其进行稀疏表示与重构的压缩感知研究。仿真结果表明:该方法能够找到最佳稀疏基,实现正切形非线性调频信号的稀疏表示与信号重构,信号波形恢复效果较好。
英文摘要:
      The study is intended to reconstruct the original signal through a linear measurement, and sampling at a speed lower than the Nyquist sampling frequency. Fractional Fourier Transform(FrFT) is applied to sparse represent signal on the Linear Frequency Modulation(LFM) basis to the LFM signal,so Ψ is substituted to the transforming matrix of Digital Fractional Fourier Transform(DFrFT),and the optimal sparse basis is gained by modulation method, then the sparse representation and reconstruction of signal is researched. Similarly, modulation method is utilized to find the optimal sparse basis of tangent-shape Nonlinear Frequency Modulation(NLFM) signals and complete the compressive sensing research of sparse representation and reconstruction. Simulation results show that the optimal sparse basis can be found with this method; and the sparse representation and reconstruction of tangent-shape NLFM signals can be accomplished with good recovery results.
引用本文:陈 旗,曹汉强,左 炜.正切形非线性调频信号压缩感知[J].太赫兹科学与电子信息学报,2017,15(6):1025~1031
DOI:10.11805/TKYDA201706.1025
学科分类代码:
查看全文  查看/发表评论  下载PDF阅读器

分享按钮