文章检索

  • 检索
  • 检索词:
  • 高级检索
您是今天第 1609位访问者
您是第 5368605 位访问者
基于深度学习与社交感知的地点推荐
Deep learning based social-aware location recommendation
投稿时间:2018-12-03  修订日期:2018-12-10
中文关键词:地点推荐  社交网络  深度学习
英文关键词:location recommendation  social network  deep learning
基金项目:
作者单位
王 磊 Tianjin Municipal People's ProcuratorateTianjin 300222China 
高 宸 Department of Electronic EngineeringTsinghua UniversityBeijing 100084China 
周 蓓 Department of Electronic EngineeringTsinghua UniversityBeijing 100084China 
李 勇 Department of Electronic EngineeringTsinghua UniversityBeijing 100084China 
摘要点击次数: 504
全文下载次数: 323
中文摘要:
      随着基于位置的社交网络的普及,地点推荐作为推荐系统的重要分支,在解决信息过载、提升用户体验、增加平台收益等方面的作用愈加明显。现有的地点推荐算法大多基于矩阵分解,难以刻画用户和地点之间复杂的交互关系;此外,在基于位置的社交网络中,社交信息是建立用户画像的重要数据来源,如何融合社交信息辅助地点推荐成为亟待解决的问题。本文研究了基于深度神经网络的地点推荐解决方案,通过设计基于社交信息的新型采样方式和正则化损失函数,从两个角度融合社交信息。在两个真实世界数据集上的实验表明,本文提出的方案可以极大提升地点推荐的精准度。
英文摘要:
      With the development of location based social network, location recommendation, a typical recommender system, plays a more and more significant role in addressing data overloading, enhancing user engagement and improving platforms’ profit. Most existing researches on location recommendation are based on matrix factorization, which cannot capture the complicated relation between users and locations. In addition, in location based social network, social relation data is important for building user demographics, and therefore it becomes a major concern that how to combine social relation data to help improving recommendation quality. In this paper, a location recommendation approach based on deep learning is studied. By designing two novel designs, a social-aware sampler and a social-enhanced regularizer, the social information is integrated. Extensive experiments on two real-world datasets demonstrate that the proposed methods can significantly improve the recommendation accuracy compared with existing models.
引用本文:王 磊,高 宸,周 蓓,李 勇.基于深度学习与社交感知的地点推荐[J].太赫兹科学与电子信息学报,2019,17(3):502~508
DOI:10.11805/TKYDA201903.0502
学科分类代码:
查看全文  查看/发表评论  下载PDF阅读器

分享按钮