文章检索

  • 检索
  • 检索词:
  • 高级检索
您是今天第 729位访问者
您是第 7275300 位访问者
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 716次   下载 526 本文二维码信息
码上扫一扫!
分享到: 微信 更多
卫星S频段下行链路频谱占用建模与预测
刘 稳1, 洪 涛1, 王 忠2, 张更新1
1.南京邮电大学 通信与信息工程学院,江苏 南京 210003;2.中国人民解放军 31006部队,北京 100840
摘要:
目前提出的频谱占用模型能够在时域上描述和重现基本的统计特征,如传统的地面移动通信的频谱占用/空闲周期长度可以用经典的广义帕累托(GP)分布、指数分布等分布来拟合。然而在某些复杂的如卫星链路频谱占用场景中,传统的参数估计分布无法给出良好的拟合。为此提出了用核密度估计(KDE)的方法来进行概率密度分布的拟合,在此基础上,分别采用差分整合移动平均自回归模型(ARIMA)和模糊神经网络对频谱占用模型的时间序列进行预测并进行对比。结论表明,核密度估计的使用可以更加准确地描述并再现卫星下行链路所使用S频段的占用时间序列的统计特征,而模糊神经网络的预测比ARIMA模型预测更加精确。
关键词:  频谱占用模型  概率密度分布  核密度估计  差分整合移动平均自回归模型预测  模糊神经网络预测
DOI:10.11805/TKYDA2019270
分类号:
基金项目:国家自然科学基金项目资助(91738201;61801445)
Modeling and prediction of time series for S-band spectrum use in satellite downlink
LIU Wen1, HONG Tao1, WANG Zhong2, ZHANG Gengxin1
1.Institute of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing Jiangsu 210003,China;2.Unit 31006 of PLA,Beijing 100840,China
Abstract:
The development of the Cognitive Radio(CR) technology has benefited from the availability of realistic and accurate spectrum occupancy models. The spectrum occupancy models proposed in the literatures so far are able to capture and reproduce the statistical characteristics of occupied time series. For example, the busy/idle-period lengths of terrestrial wireless network can be fitted by Generalized Pareto(GP) distribution, exponential distribution, etc. However, the traditional parameter estimation distribution cannot give a good fit in satellite link spectrum occupancy. In this context, a method of Kernel Density Estimation(KDE) is proposed to fit the probability density distribution. On this basis, the Auto Regressive Integrated Moving Average Model(ARIMA) and fuzzy neural network are adopted to predict and compare the time series of the spectrum occupancy models. The conclusion shows that the proposed method can describe and reproduce the statistical characteristics of the occupied time series of the S-band used in the satellite downlink more accurately; while the prediction of the fuzzy neural network is more accurate than that of the ARIMA model.
Key words:  spectrum occupancy model  probability density distribution  kernel density estimation  Auto Regressive Integrated Moving Average Model(ARIMA) forecast  fuzzy neural network prediction

分享按钮