文章检索

  • 检索
  • 检索词:
  • 高级检索
您是今天第 1832位访问者
您是第 7258714 位访问者
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 662次   下载 502 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一维对象复杂度的灰度图像分割算法
章 怡, 王海峰
江苏理工学院 信息中心,江苏 常州 213001
摘要:
从图像复杂度的角度,提出一种一维对象复杂度的灰度图像分割算法。用阈值将灰度图像分为背景与目标2类,统计其对应直方图与总像素个数,并计算对象复杂度;依据图像复杂度分割准则算法公式,遍历每一灰度级对应的图像复杂度值,选取图像复杂度值最小对应的灰度值为最佳分割阈值。仿真实验结果表明,与经典Otsu算法、信息最大熵算法和最小交叉熵算法相比,本文算法速度快,稳定性和效率最好,是一种通用有效的图像分割算法。
关键词:  对象复杂度  图像分割  Otsu算法  最大熵  最小交叉熵
DOI:10.11805/TKYDA2018142
分类号:
基金项目:江苏省常州市科技计划资助项目(CE20165049);江苏省高校自然科学基金资助项目(18KJB520012)
Grayscale image segmentation algorithm based on one-dimensional object complexity
ZHANG Yi, WANG Haifeng
Information Center,Jiangsu University of Technology,Changzhou Jiangsu 213001
Abstract:
Inspired by the classical segmentation algorithm, this paper proposes a grayscale image segmentation algorithm based on the image complexity. Firstly, the grayscale image is divided into background and target categories by the threshold, the corresponding histogram and total number of pixels are calculated, as well as the complexity of objects. Secondly, according to the image complexity segmentation criterion, the image complexity of each gray level is calculated. Finally, the optimal segmentation threshold is obtained by the minimum value of the object complexity. Compared with the other three classical algorithms, the experimental results show that the proposed image segmentation algorithm is fast, stable and efficient.
Key words:  object complexity  image segmentation  Otsu  maximum entropy  minimum cross entropy

分享按钮