面向截止频率提升的GaAs SBD器件仿真设计
DOI:
作者:
作者单位:

中国工程物理研究院电子工程研究所

作者简介:

通讯作者:

基金项目:

中国工程物理研究院院长基金;国家自然科学基金

伦理声明:



Simulation and Design of GaAs Schottky Barrier Diodes (SBD) Targeting Cutoff Frequency Enhancement
Author:
Ethical statement:

Affiliation:

Institute of Electronic Engineering,China Academy of Engineering Physics

Funding:

President Fund of China Academy of Engineering Physics; National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文围绕动态截止频率这一关键参数,分别从掺杂浓度(固定有源层厚度200nm)和有源层厚度(固定掺杂浓度)结构设计入手,解析了不同N-GaAs掺杂浓度和层厚度下器件的电容、电阻和截止频率特性。研究表明:N-GaAs固定层厚度为200 nm时,动态截止频率随掺杂浓度先升高后降低,峰值可达4.2THz,此时掺杂浓度优值为。掺杂浓度从增加至时,动态截止频率提升。主要归因于电容调制比随掺杂浓度的增加而增大。掺杂浓度提高引起的串联电阻降低,进一步提升了截止频率。然而,当掺杂浓度继续增加时,电容调制比达到饱和,此时掺杂浓度提高引起的零偏结电容显著增加,主导了动态截止频率降低。在层厚研究中,掺杂浓度固定为。此时最优层厚度为340 nm,动态截止频率可达4.5THz。在层厚度从100nm加厚至340nm时,电容调制比的快速增大,抑制了串联电阻增加带来的影响,动态截止频率显著提升。然而当层厚度超过340nm后,类似地,电容调制比出现饱和现象。此时,过大的厚度增加了串联电阻,动态截止频率开始下降。本文揭示了动态截止频率的变化特点,给出了两种实现高动态截止频率的结构参数设计优值,为后续器件设计提供了理论基础和指导。

    Abstract:

    This study focuses on the dynamic cutoff frequency, a critical parameter, analyzing the characteristics of capacitance, resistance, and cutoff frequency of devices under different N-GaAs doping concentrations and layer thicknesses. The research is divided into two structural design approaches: varying doping concentration (with a fixed active layer thickness of 200 nm) and varying active layer thickness (with a fixed doping concentration of ).The findings indicate that, with a fixed N-GaAs layer thickness of 200 nm, the dynamic cutoff frequency increases initially with doping concentration, reaches a peak of 4.2 THz at an optimal doping concentration of , and then decreases. When the doping concentration increases from to , the dynamic cutoff frequency improves, primarily due to the increase in the capacitance modulation ratio as doping concentration rises. Additionally, the reduction in series resistance caused by higher doping concentration further enhances the cutoff frequency. However, when the doping concentration continues to increase, the capacitance modulation ratio saturates. At this point, the significant increase in zero-bias junction capacitance due to higher doping concentration dominates, resulting in a reduction in the dynamic cutoff frequency.In the layer thickness study, with a fixed doping concentration of, the optimal layer thickness is 340 nm, yielding a dynamic cutoff frequency of 4.5 THz. As the layer thickness increases from 100 nm to 340 nm, the rapid rise in the capacitance modulation ratio offsets the impact of the increased series resistance, leading to a significant improvement in the dynamic cutoff frequency. However, when the layer thickness exceeds 340 nm, the capacitance modulation ratio saturates, and the excessive thickness increases the series resistance, causing the dynamic cutoff frequency to decline.This study elucidates the dynamic cutoff frequency characteristics and provides optimal structural parameters for achieving high dynamic cutoff frequencies. The findings serve as a theoretical foundation and guide for future device design.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2024-11-26
  • 最后修改日期:2025-05-27
  • 录用日期:2025-06-19
  • 在线发布日期:
  • 出版日期:
关闭