面向有源配电台区电力设备安全的太赫兹指纹识别与分簇协同联邦学习方法
DOI:
作者:
作者单位:

国网天津市电力公司 电力科学研究院

作者简介:

通讯作者:

基金项目:

国网天津市电力公司科技项目

伦理声明:



A Terahertz Fingerprint Recognition and Clustered Federated Learning Method for Power Equipment Security in Active Distribution Substations
Author:
Ethical statement:

Affiliation:

Electric Power Research Institute,State Grid Tianjin Electric Power Company

Funding:

State Grid Tianjin Electric Power Company Science and Technology Project

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    论文研究并提出了一种面向有源台区的电力设备太赫兹指纹识别防篡改与分簇联邦学习协同方法,以提升对有源台区内海量分布式电力设备的安全管理能力。首先通过特殊的工艺制作电力设备太赫兹标签,提供物理防伪基础。进而提出了一种双分支多模态卷积神经网络来识别设备指纹是否存在异常篡改。最后设计了一种分簇联邦学习训练方法,避免因隐私问题导致的防篡改识别模型的数据难以共享共用,并实现有源台区内多设备太赫兹指纹数据的分布式联合建模与高效协同训练。实验结果表明,相较于传统方法,本文所提出方法对比直方图相似度算法提升了212%的识别精度,在提高设备指纹识别精度、增加训练效率和数据可用不可见等方面对比传统图像识别算法均具有显著优势,最终达到了90%以上的指纹识别精度,为电力设备的安全监测及预防攻击提供了新的技术路径。

    Abstract:

    This paper proposes a terahertz fingerprint recognition and clustered federated learning collaboration method for anti-tampering protection of power equipment in power-supplied distribution areas, aiming to enhance the security management of massive distributed power devices within such areas. First, specialized manufacturing techniques are used to create terahertz tags for power equipment, providing a foundation for physical anti-counterfeiting. Then, a dual-branch multimodal convolutional neural network is introduced to detect abnormal tampering of device fingerprints. Finally, a clustered federated learning training method is designed to address data-sharing challenges caused by privacy concerns in anti-tampering recognition models, enabling distributed joint modeling and efficient collaborative training of terahertz fingerprint data across multiple devices in power-supplied distribution areas. Experimental results demonstrate that compared with traditional methods, the proposed approach improves recognition accuracy by 212% over the histogram similarity algorithm. Additionally, it significantly outperforms conventional image recognition algorithms in terms of fingerprint recognition accuracy, training efficiency, and ensuring data usability while maintaining privacy. Finally, the fingerprint recognition accuracy reached more than 90%, thereby provides a novel technical pathway for security monitoring and attack prevention of power equipment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2025-02-08
  • 最后修改日期:2025-03-19
  • 录用日期:2025-04-09
  • 在线发布日期:
  • 出版日期:
关闭