基于机器学习赋能的太赫兹超表面设计与应用
DOI:
作者:
作者单位:

南京大学电子科学与工程学院超导电子学研究所

作者简介:

通讯作者:

基金项目:

伦理声明:



Machine learning-enabled terahertz metasurface design and applications
Author:
Ethical statement:

Affiliation:

Research Institute of Superconductor Electronics, School of Electronic Science and Engineering Nanjing University

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近年来,太赫兹超表面与蓬勃发展的机器学习技术的结合,为其发展注入了新的活力。得益于机器学习技术高效的迭代速率与多样化的网络架构,机器学习一方面被广泛应用于太赫兹超表面全波数值模拟的代理模型以及智能设计;另一方面,太赫兹超表面为光计算提供了以光速执行的计算平台。本文将聚焦于机器学习在太赫兹频段超表面的应用,首先阐述基于深度神经网络和生成式对抗网络的设计框架及其原理,揭示机器学习在多维参数优化中的优势;其次,以全光衍射深度神经网络架构为例介绍太赫兹超表面用于执行机器学习算法的物理机制以及衍生应用;最后,对机器学习与太赫兹超表面结合方式的发展趋势以及应用前景进行了展望。

    Abstract:

    In recent years, the integration of terahertz metasurfaces with the rapidly developing machine learning technologies has injected new vitality into the development. Thanks to the efficient iterative rates and diverse network architectures of machine learning, it has been widely applied in both the surrogate modeling and intelligent design of full-wave numerical simulations for terahertz metasurfaces. On the other hand, terahertz metasurfaces provide a platform for optical computing, enabling computation at the speed of light. This paper focuses on the application of machine learning in the terahertz metasurfaces. It first elaborates on the design frameworks and principles based on deep neural networks and generative adversarial networks, revealing the advantages of machine learning in multi-dimensional parameter optimization. Secondly, using the all-optical diffraction neural network architecture as an example, it introduces the physical mechanisms by which terahertz metasurfaces can be used to execute machine learning algorithms, along with potential derived applications. Finally, the paper looks ahead to the development trends and application prospects of the integration of machine learning with terahertz metasurfaces.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2025-02-14
  • 最后修改日期:2025-04-05
  • 录用日期:2025-04-07
  • 在线发布日期:
  • 出版日期:
关闭