基于改进PSO算法的高增益DC/DC变换器小信号模型辨识
作者:
作者单位:

1.西安石油大学 陕西省油气井测控技术重点实验室,陕西 西安 710065;2.西安微电子技术研究所,陕西 西安 710018

作者简介:

陈佳(1985-),男,博士,讲师,主要研究方向为检测技术与自动化装置.email:180705@xsyu.edu.cn.
郭玉祥(2000-),男,在读硕士研究生,主要研究方向为控制科学与工程.
刘红霞(1979-),女,博士,研究员,主要研究方向为开关电源设计、碳化硅功率半导体器件.
王佳豪(2001-),男,在读硕士研究生,主要研究方向为电气工程.
宋久旭(1979-),男,博士,副教授,主要研究方向为电力电子技术与无线电能传输技术.

通讯作者:

刘红霞 (1979-),女,博士,研究员,主要研究方向为开关电源设计、碳化硅功率半导体器件. email:m19829312383@163.com

基金项目:

陕西省重点研发计划资助项目(2022GY?135)

伦理声明:



Small signal model identification for high step-up DC/DC converter with improved PSO algorithm
Author:
Ethical statement:

Affiliation:

1.Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells,Xi'an Shiyou University,Xi'an Shaanxi 710065,China;2.Xi'an Microelectronics Technology Institute,Xi'an Shaanxi 710018,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    高增益DC/DC变换器在新能源发电和直流微网中具有良好的应用前景,而良好的动态特性是其应用的基础。与传统开关变换器相比,高增益变换器建模存在计算量大和模型阶数高等难题。本文基于系统辨识的高增益变换器系统建模新方法,在分析三绕组Boost?Forward变换器工作原理基础上,采用状态空间法建立变换器的小信号模型,并对建立模型正确性进行仿真验证。重点分析了状态空间法建模误差的来源,使用最小二乘法初步提取变换器的小信号模型,系统模型精确度为91.43%;进而使用改进粒子群(PSO)算法精确提取小信号模型,系统模型辨识精确度为94.62%。数值实验结果证明了本文辨识方法的正确性。该结果对复杂变换器的建模和控制回路设计有较高参考价值。

    Abstract:

    High-gain DC/DC converters have a promising application prospect in new energy generation and DC microgrids, and good dynamic characteristics are the foundation of their applications. Compared with traditional switching converters, high-gain converters face challenges such as high computational complexity and high model order in modeling. A new modeling method is proposed for high-gain converters based on system identification. It analyzes the working principle of the three-winding Boost?Forward converter and establishes a small-signal model of the converter using the state-space method. The correctness of the established model is verified through simulation. The sources of modeling errors in the state-space method are analyzed. The small-signal model of the converter is initially extracted using the least squares method, with a system model accuracy of 91.43%. Subsequently, an improved Particle Swarm Optimization(PSO) algorithm is employed to accurately extract the small-signal model, achieving a system model identification accuracy of 94.62%. Numerical experimental results demonstrate the correctness of the proposed identification method. The results have high reference value for the modeling and control loop design of complex converters.

    参考文献
    相似文献
    引证文献
引用本文

陈佳,郭玉祥,刘红霞,王佳豪,宋久旭.基于改进PSO算法的高增益DC/DC变换器小信号模型辨识[J].太赫兹科学与电子信息学报,2025,23(4):393~402

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2024-09-06
  • 最后修改日期:2024-12-09
  • 录用日期:
  • 在线发布日期: 2025-05-07
  • 出版日期:
关闭