基于改进MobileViT模型的毫米波雷达动态手势识别方法
DOI:
作者:
作者单位:

1.华北水利水电大学;2.许昌学院;3.许昌初心智能电气科技有限公司

作者简介:

通讯作者:

基金项目:

河南省科技厅科技攻关项目-基于毫米波雷达的动态手势识别算法研究(项目编号:242102210067); 河南省重点研发项目-低成本小型化毫米波雷达高精度智能感知系统关键技术研究及应用(项目编号:241111212500)

伦理声明:



A dynamic Hand Gesture Recognition Method of mmWave Radar Based on improved MobileViT model
Author:
Ethical statement:

Affiliation:

1.North China University of Water Resources and Electric Power;2.Xuchang University;3.Xuchang Chuxin Intelligent Electrical Technology Co.

Funding:

Henan Provincial Science and Technology Department - Research on Dynamic Gesture Recognition Algorithms Based on Millimeter-Wave Radar (Project No.: 242102210067);Henan Provincial Key Research and Development Project - Research and Application of Key Technologies for Low-Cost Miniaturized Millimeter-Wave Radar High-Precision Intelligent Sensing System (Project No.: 241111212500)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    利用毫米波雷达进行手势识别具有非接触、检测精度高、不侵犯用户隐私、环境适应性好等优点,在工业人机交互、智能家居等场景具有广泛的应用。然而, 现有毫米波雷达动态手势识别方法存在模型复杂度高、计算成本大,以及识别准确率低、推理速度慢等问题。针对上述挑战,本文提出基于改进的轻量级 MobileViT 网络的手势识别方法,在保持高识别准确度的同时降低计算复杂度,以满足嵌入式设备的部署需求。首先,采集动态手势动作的毫米波雷达回波信息,消除设备噪声和背景干扰后,重组数据为 采样点数*脉冲数*帧数 三维数据矩阵;利用傅里叶变换生成手势动作的距离-时间图谱和多普勒-时间图谱,将特征图输入到改进后的MobileViT网络模型中进行特征提取和融合,输出手势动作识别结果。实验结果表明,所构建的MobileViT模型参数空间复杂度降低到0.167 M,计算复杂度为0.253 GFLOPs;该方法在12种手势类型的数据集中进行验证,识别准确率为99.31 %,证明了该方法的有效性。

    Abstract:

    Gesture recognition using millimeter-wave radar offers advantages such as contactless interaction, high detection accuracy, user privacy protection, and strong environmental adaptability, making it widely applicable in industrial human-computer interaction and smart home scenarios. However, existing millimeter-wave radar dynamic gesture recognition methods suffer from high model complexity, large computational costs, low recognition accuracy, and slow inference speed. To address these challenges, this paper proposes a millimeter-wave radar gesture recognition method based on an improved lightweight MobileViT network. Specifically, millimeter-wave radar echo signals of dynamic gestures are collected. After eliminating device noise and background interference, the data is reconstructed into a three-dimensional matrix with dimensions of sampling points × pulses × frames. The Fourier transform is then applied to generate the range-time and Doppler-time spectrograms, which are fed into the improved MobileViT network for feature extraction and fusion. Finally, the model outputs the recognized gesture categories. Experimental results demonstrate that the proposed MobileViT model reduces parameter space complexity to 0.167 M and computational complexity to 0.253 GFLOPs. The method is validated on a dataset containing 12 gesture types, achieving a recognition accuracy of 99.31%, proving its effectiveness.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2025-04-07
  • 最后修改日期:2025-05-26
  • 录用日期:2025-06-17
  • 在线发布日期:
  • 出版日期:
关闭