Abstract:With the advent of the intelligent era, magnetic field sensors have been widely used in mobile devices to provide users with services such as positioning and navigation. At present, the magnetic field sensors based on Hall effect and the magnetoresistive magnetic field sensors which rely on magnetic materials are two dominant technologies in the market. The advantages of the magnetic field sensors based on the Hall effect include low cost, no need for magnetic materials and fabrication compatibility with the Complementary Metal Oxide Semiconductor(CMOS) technology. The operating range of this kind of sensors typically is from 10 μT to 1 T, and the resolution can be improved by increasing the power consumption. Magnetoresistive magnetic field sensors have high resolution and wide operating range(0.1 nT~1 T), and their performances mainly depend on the magnetic materials adopted. Besides these two technologies, resonant magnetic field sensors composed of silicon-based Micro-Electro-Mechanical System(MEMS) resonators have received extensive attention in recent years due to their benefits of small form factor, low power consumption, high performance and fabrication compatibility with CMOS technology. This paper reviews the latest developments of magnetic field sensors using silicon-based MEMS resonators. In addition, methods for improving the performance of such sensors are described. The current key challenges and future opportunities are provided.