摘要
无线通信系统日益朝着高功率、高灵敏度的方向发展,无源互调(PIM)对信号传输的干扰问题是通信系统发展中亟需攻克的难题之一。据此,本文综述了无源互调产生的机理,并从降低接触面粗糙度、应用涂层材料和优化器件结构3个方面重点总结了无源互调抑制技术的研究进展,同时对不同抑制技术的优缺点进行了分析,最后对无源互调抑制技术的发展趋势进行了展望,以期为相关研究者提供借鉴和指导。
当今时代背景下,信息技术与电子通信领域成为全球竞争的核心,无论是科技发展还是生活需要,都对通信领域的要求日益提
基于此,本文在查阅大量文献的基础上,归纳了无源互调的产生机理,并对抑制无源互调的相关技术进行了总结与分析,最后展望了无源互调抑制技术的发展趋势,以期为相关研究者在寻找无源互调抑制技术及促进此领域的发展提供借鉴及新思路。
无源互调(PIM)是由2个或2个以上的发射载波,在无源器件中相遇时产生的基本信号频率的线性组合产物落入接收通带内形成

图1 无源互调干扰的简化示意图
Fig.1 Simplified schematic diagram of passive intermodulation interference
在多频环境下,互调产物随系统载波数的增加而急剧增加,三阶互调增加速度甚至高于指数上升。在载波较多时,无源互调干扰就类似宽带噪声。互调产物和传输信道数目的关系如

图2 PIM产物和传输通道数的关系
Fig.2 Relationship between PIM products and the number of transmission channels
有关无源互调产生机理的文献较少,但涉及的领域众多,研究者可能提出的机理分析分属不同学科和领域,尚未就PIM产生机理达成共识。依据现有文献,PIM的产生主要来源于无源器件自身的接触非线性特性。接触非线性是指具有非线性电流/电压特性的材料接触引起的非线性,如有氧化层的金属接触表
如果使用的器件材质为金属,接触面表面则有可能会出现薄膜,如暴露在空气中形成的氧化膜、物理吸附膜或化学吸附膜、表面的污染物
在MIM接触中,2个金属导体被绝缘层隔开,通常情况下,由于绝缘层的存在,电子没有足够的能量克服金属之间的电势壁垒,电流无法从一个金属导体传输到另一个金属导
Guenze
(1) |
式中:e为电子电荷:m为电子质量:U为MIM接触结两端电压:H=h/2π(h为普朗克常数);φ为金属的功函数。
A的定义为:
(2) |
式中s为截止区的宽度。
此式为典型的非线性指数函数,因此电子遂穿效应会发生非线性现象,导致PIM的产生。
非铝制品金属中,当氧化层厚度达到1~2 nm时,会出现明显的隧道电流。如果采用涂覆工艺抑制PIM,必须确保涂层不会因为过薄而出现明显的隧穿电流,否则可能会恶化无源互调现象。
热电子发射效应也是MIM接触中存在的非线性现象。外部环境的热能给予了一侧金属表面电子足够的动能,因此电子可以突破绝缘层的电势壁垒到达另一侧金
在MIM接触结施加电压,电流密度如
(3) |
式中:a=4πme
根据
接触电流效应实际上是指由于接触点(或区域)的高电流密度所导致的一类非线性物理现象的统

图3 金属接触模型
Fig.3 Metal contact model
电磁波在不同的媒介中传播会呈现出不同的特

图4 两种材质拼接而成的矩形平板
Fig.4 Rectangular plate made of two materials
在通信系统的各种器件中,无论是MM接触还是MIM接触都是难以避免的,处理方式多样且复杂,因此,如何抑制接触非线性引发的无源互调现象备受关
金属表面的粗糙程度对电流的传输有很大影响,是产生无源互调的重要原因之
黄建国

图5 (a) RTF铜箔在基材上的压痕;(b) HTE铜箔在基材上的压痕
Fig.5 (a) indentation of RTF copper foil on the substrate; (b) indentation of HTE copper foil on the substrate
针对PIM问题,Rogers公司采用超光滑电沉积铜箔开发了IM Series™高频层压板,该铜箔对基材具有良好的粘附性。超光滑铜箔的粗糙度为0.5 μm,而当前普遍使用的反向处理电沉积铜箔的粗糙度为1.0 μm。这种超低粗糙度的IM铜箔与所选层压板中的受控介电性能相组合,可实现超低PIM层压板,满足当今基站天线市场对信号传输的严苛需求。影响铜箔表面粗糙度的因素有很多,如电解液中铜离子浓
Ansuinelli
MM接触时,受金属表面粗糙度和金属硬度的影响,接触面易呈现出
当金属-金属接触发生时,金属硬度不同,接触面的接触情况也不同。2种较硬的金属接触时,实际接触面积要比其中一方为较软金属的接触面积小,电流的聚集情况也会较明显。因此,可以在接触面涂敷硬度较低的金属涂层,增大实际接触面积,降低非线性电流的产生,抑制PIM现象。同时,在实际应用中尽量避免使用铁、镍等具有非线性的铁磁材料作为涂
同轴连接器广泛用于通信系统中,在不同的电路模块之间传输信号,其产生的PIM会对通信系统造成危害。Jin
金属涂层虽然对无源互调有一定的抑制效果,但金属接触空气后易氧化,且涂层附着力不够强,耐磨性不够高,特别是器件多次插拔对涂层磨损较大,导致磨屑掉落,引起更严重的非线性问题。非金属材料,特别是有机材料,作为介质层对PIM有优异抑制效果的同时,还能有效抑制金属接触面氧化物的生成,附着力和耐磨性也相对较高,具有广阔的应用前
李韵
根据无源互调的定义,可以将其看作一种宽带噪声,既然在同轴连接器上涂敷绝缘介质层避免MM接触能够抑制PIM,则相同类型的材料都能起到同样的效果。对于使用非金属涂层抑制PIM的文献数量很少,但有关绝缘介质层的研究众多,可以通过借鉴绝缘介质层的制备,扩大非金属涂层的选择范围,为PIM抑制技术的发展拓宽道路。
由于数字系统中工作频率的稳步提高和电源电压的降低,同步开关噪声(Synchronous Switching Noise,SSN)会影响高速系统的性
射频识别(Radio Frequency Identification,RFID)芯片伴随着半导体技术的发展得到了广阔的应用,但RFID芯片向深亚微米的发展使其关键部件MIM电容的制造工艺成为难点。张平
由上可知,在器件中应用涂层材料时,金属涂层特别是金、银等贵金属在PIM抑制上有显著效果,但这类金属涂层造价昂贵,且涂层的附着力不佳,多次插拔会有磨屑产生,磨屑掉落可能会造成电路局部短路等情况,影响信号的传输,造成新的PIM产物。非金属涂层具有广阔的应用前景,特别是有机涂层优异的附着力和耐磨性,能够有效抑制PIM的产生,降低涂层的制备成本。但目前有关非金属涂层的研究还不够深入,难以对PIM抑制技术的进一步开发产生有效的指导作用。
除了降低接触面的粗糙度和使用涂层外,优化器件结构,如调整器件尺寸、增大接触压力或直接选择无接触结构也对PIM的抑制有着非常显著的效
Zelenchuk
在微波连接器或波导中,由于没有一个金属的表面可以完全光滑,因此实际接触并不是2个面的完全接
采用高压法兰实现接触面的紧密连接会使工艺及其装配复杂度大幅提升,且无法从根本上消除法兰连接的接触非线性。扼流法兰虽避免了一部分接触,但其工作带宽较窄,无法满足宽带系统需求,而非接触式法兰可有效避免由于接触非线性引起的PIM现象。非接触式法兰及其转换结构中,最广泛应用的是单面钉床人工磁导体(Artificial Magnetic Conductor,AMC)平面,钉床形式的人造磁性导体板围绕阳凸缘的外表面布置,而具有较宽中空端的波导管用作阴凸缘。与平面法兰相比,这种非接触式法兰的尺寸显著减小。与传统波导法兰相比,其PIM水平最大可提高30 dBm,几乎不受表面镀层材料和连接压力的影响,但这种方法需要改变原始部件的结

图6 非接触式低无源互调波导法兰转换结构
Fig.6 Non-contact low passive intermodulation waveguide flange conversion structure
综上所述,由于半导体效应、接触电流效应、非线性散射效应等产生的接触非线性导致了无源互调现象的出现。随着通信系统向更大功率、更宽频带和更高接收灵敏度的方向发展,通信系统对PIM问题的敏感程度将越来越大,因此,PIM问题始终是通信系统设计和运行时需认真考虑的重要因素。目前,克服接触非线性抑制PIM的技术已逐步出现,但如前文所述,现有技术的成熟度还不高,且各有其优缺点,如
inhibition technology | the advantages | the disadvantages |
---|---|---|
reduce contact surface roughness |
effective in reducing skin effect; significant suppression of contact current effect |
Many influencing factors are not easy to regulate; limited range of roughness improvement |
apply coating technology |
Metal coating can effectively increase the contact area; non-metal coating has strong adhesion and a wide range of material selection, resulting in lower costs |
Metal coatings are easy to oxidize and not wear-resistant; less research related to non-metallic coatings, not enough research depth |
optimize device structure | Non-contact structure reduces contact and effectively avoids PIM; increased contact pressure allows for tight connections | complex production process and assembly; narrow working bandwidth; not conducive to small and light weight |
1) 进一步寻求可降低金属接触面粗糙度的方法。现有方法虽可在一定程度上降低金属接触面的粗糙度,但最大程度也只能降低至0.5 μm,且无法完全消除接触非线性,因此寻求更加有效的能够降低金属接触面粗糙度的方法,完全消除接触非线性将是今后的主要发展方向之一;
2) 研究更加丰富的能够抑制PIM的涂层材料。现有研究中已有采用涂层材料抑制PIM的报道,但相关研究较少,且一般采用软金属或有机涂层,其种类相对单一,研究深度不够。相较其他抑制技术,应用涂层材料具有操作简单、易于实现的优点,因此涂层技术将会成为今后PIM抑制技术发展的主流方向,研究丰富多样的涂层材料对PIM的影响对于本领域的发展具有重要意义;
3) 寻求小型轻量化的非接触式连接,优化器件结构,从根本上断绝接触非线性的产生,也将成为今后抑制PIM的主要手段;
4) 探究将多种PIM抑制技术集于一体的方法,从而更加有效地降低PIM,适合更加严苛条件下的使用;
5) 更加系统地研究PIM现象产生的原因,丰富该领域的理论基础,并为寻求更有效的PIM抑制技术产生指导作用。
参考文献
刘洋,戴浩. 电子通信技术创新的重要性及优化策略研究[J]. 科技创新与应用, 2021,11(28):158-160. [百度学术]
LIU Yang,DAI Hao. Research on the importance of electronic communications technology innovation and its optimization strategy[J]. Technology Innovation and Application, 2021,11(28):158-160. [百度学术]
王斌. 微波频段无源互调干扰研究[D]. 哈尔滨:哈尔滨工业大学, 2014. [百度学术]
WANG Bin. Research on passive intermodulation interference in microwave band[D]. Harbin,China:Harbin Institute of Technology, 2014. [百度学术]
刘彭坚. 浅析射频分布系统中无源互调的危害及预防[J]. 电子测试, 2021(15):86-88,121. [百度学术]
LIU Pengjian. The harm and prevention of passive intermodulation in RF distribution system[J]. Electronic Test, 2021(15):86-88,121. [百度学术]
王佩. 非线性结构无源互调分析的等效电路法[D]. 西安:西安电子科技大学, 2013. [百度学术]
WANG Pei. Equivalent circuit method for passive intermodulation analysis of nonlinear structures[D]. Xi'an:China:Xidian University, 2013. [百度学术]
王小丽,陈翔,崔万照. 空间大功率微波器件无源互调最新研究进展[J]. 空间电子技术, 2020,17(5):1-10. [百度学术]
WANG Xiaoli,CHEN Xiang,CUI Wanzhao. Recent research advances of passive intermodulation for high-power microwave components[J]. Space Electronic Technology, 2020,17(5):1-10. [百度学术]
张莉. 同轴编织电缆组件互调性能的改善与测量[D]. 苏州:苏州大学, 2014. [百度学术]
ZHANG Li. Improvement and measurement of intermodulation performance of coaxial braided cable assembly[D]. Suzhou,China:Suzhou University, 2014. [百度学术]
赵培. 无线通信UHF频段的无源互调干扰研究[D]. 北京:北京邮电大学, 2015. [百度学术]
ZHAO Pei. Research on passive intermodulation interference in UHF band of wireless communication[D]. Beijing:Beijing University of Posts and Telecommunications, 2015. [百度学术]
叶鸣,贺永宁,孙勤奋,等. 大功率条件下的无源互调干扰问题综述[J]. 空间电子技术, 2013,10(1):75-83. [百度学术]
YE Ming,HE Yongning,SUN Qinfen,et al. Review of passive intermodulation interference problem under high power signals[J]. Space Electronic Technology, 2013,10(1):75-83. [百度学术]
张世全. 无源互调干扰导论[M]. 西安:西安电子科技大学出版社, 2014. [百度学术]
ZHANG Shiquan. Introduction to passive intermodulation interference[M]. Xi'an,China:Xidian University Press, 2014. [百度学术]
CHEN Xiong,WANG Ling,YU Ming. Directional passive intermodulation effect by distributed nonlinearities in two-port network[J]. Microwave and Optical Technology Letters, 2020,63(3):793-797. [百度学术]
王小丽,陈翔,李军,等. 航天微波部件的无源互调抑制方法研究进展[J]. 中国空间科学技术, 2021,41(2):1-9. [百度学术]
WANG Xiaoli,CHEN Xiang,LI Jun,et al. Recent research advances of passive intermodulation suppression methods for aerospace microwave components[J]. Chinese Space Science and Technology, 2021,41(2):1-9. [百度学术]
刘强. 无源互调类型预测及接触非线性分析[D]. 西安:西安电子科技大学, 2014. [百度学术]
LIU Qiang. Passive intermodulation type prediction and contact nonlinearity analysis[D]. Xi'an,China:Xidian University, 2014. [百度学术]
李霄枭,崔万照,胡天存,等. 无源互调抑制技术研究现状及发展趋势[J]. 空间电子技术, 2017,14(4):1-6. [百度学术]
LI Xiaoxiao,CUI Wanzhao,HU Tiancun,et al. Review of passive intermodulation techniques and development trend[J]. Space Electronic Technology, 2017,14(4):1-6. [百度学术]
SHITVOV A,SCHUCHINSKY A G,STEER M B,et al. Characterisation of nonlinear distortion and intermodulation in passive devices and antennas[C]// 2014 European Conference on Antennas and Propagation. The Hague:IEEE, 2014:1454-1458. [百度学术]
BOLLI P,SELLERI S,PELOSI G. Passive intermodulation on large reflector antennas[J]. IEEE Antennas & Propagation Magazine, 2002,44(5):13-20. [百度学术]
LUI P L. Passive intermodulation interference in communication systems[J]. Electronics and Communication Engineering Journal, 1990,2(3):109-118. [百度学术]
蔡鹏军. 通信卫星大功率射频组件无源互调的控制研究[D]. 成都:电子科技大学, 2020. [百度学术]
CAI Pengjun. Research on passive intermodulation control of high power RF components of communication satellite[D]. Chengdu,China:University of Electronic Science and Technology of China, 2020. [百度学术]
叶鸣,贺永宁,王新波,等. 金属波导连接的无源互调非线性物理机制和计算方法[J]. 西安交通大学学报, 2011,45(2):82-86. [百度学术]
YE Ming,HE Yongning,WANG Xinbo,et al. Nonlinear physical mechanism and calculation method of passive intermodulation at metal waveguide connection[J]. Journal of Xi'an Jiaotong University, 2011,45(2):82-86. [百度学术]
乔志杰,谢义. 2.92 mm射频同轴连接器及其绝缘支撑设计研究[J]. 新乡学院学报, 2021,38(9):36-38. [百度学术]
QIAO Zhijie,XIE Yi. Design of research on 2.92 mm RF coaxial connector and its insulation support[J]. Journal of Xinxiang University, 2021,38(9):36-38. [百度学术]
LYU Le,LIU Wei. Organic-inorganic hybrid anticorrosion coatings with aniline substituted group[J]. Molecular Crystals and Liquid Crystals, 2020,710(1):103-109. [百度学术]
IVAR G,邱经武,须重明. 电子隧穿效应和超导性[J].物理, 1984,13(1):52. [百度学术]
IVAR G,QIU Jingwu,XU Chongming. Electron tunneling effect and superconductivity[J]. Physics, 1984,13(1):52. [百度学术]
杨会平. 微放电效应与松散连接对无源互调的影响机理研究[D]. 长沙:湖南大学, 2019. [百度学术]
YANG Huiping. Study on the influence mechanism of micro discharge effect and loose connection on passive intermodulation[D].Changsha,Hunan,China:Hunan University, 2019. [百度学术]
GUENZER C S. Comments on "Spurious signals generated by electron tunneling on large reflector antennas"[J]. Proceedings of the IEEE, 1976,64(2):283. [百度学术]
陈舒. 金属热电子发射和光电效应逸出功微观机制的区别[J]. 科技视界, 2012(19):194,152. [百度学术]
CHEN Shu. Work function differences between thermo-electronic emission and photoelectric effects[J]. Science and Technology Vision, 2012(19):194,152. [百度学术]
张亚东,贾昆鹏,吴振华,等. 二硫化钼场效应晶体管金属接触的研究进展[J]. 微纳电子技术, 2020,57(2):109-118. [百度学术]
ZHANG Yadong,JIA Kunpeng,WU Zhenhua,et al. Research progress of metal contact of MoS2 field effect transistor[J]. Micronanoelectronic Technology, 2020,57(2):109-118. [百度学术]
IBACH H,LUTH H. Solid-state physics[M]. Berlin:Springer, 2009. [百度学术]
易炎高. 基站电调天线无源互调研究[D]. 广州:华南理工大学, 2012. [百度学术]
YI Yangao. Research on passive intermodulation of base station electrically modulated antenna[D]. Guangzhou,China:South China University of Technology, 2012. [百度学术]
VICENTE C,HARTNAGEL H L. Passive-intermodulation analysis between rough rectangular waveguide flanges[J]. IEEE Transactions on Microwave Theory & Techniques, 2005,53(8):2515-2525. [百度学术]
RUSSER J,RAMACHANDRAN A,CANGELLARIS A,et al. Phenomenological modeling of Passive Intermodulation(PIM) due to electron tunneling at metallic contacts[C]// IEEE MTT-S International Conference on Microwave Symposium Digest. San Francisco,CA:IEEE, 2006:1129-1132. [百度学术]
WILKERSON J R. Passive Intermodulation distortion in radio frequency communication systems[D]. North Carolina:North Carolina State University, 2010. [百度学术]
孙善球,肖飞,林学进. 移动通信天线无源互调产生机理与改善研究[J]. 通信技术, 2021,54(7):1755-1763. [百度学术]
SUN Shanqiu,XIAO Fei,LIN Xuejin. Research on mobile communication antenna passive intermodulation causes mechanism and improvement[J]. Communications Technology, 2021,54(7):1755-1763. [百度学术]
YANG H,WEN H,QI Y,et al. An equivalent circuit model to analyze passive intermodulation of loose contact coaxial connectors[J]. IEEE Transactions on Electromagnetic Compatibility, 2018,60(5):1180-1189. [百度学术]
SHRAMKOVA O V,MAKRIS K G,CHRISTODOULIDES D N,et al. Nonlinear scattering by non-Hermitian multilayers with saturation effects[J]. Physical Review E, 2021,103(5):052205. [百度学术]
刘艺彩. 散射体无源互调分析[D]. 西安:西安电子科技大学, 2012. [百度学术]
LIU Yicai. Passive intermodulation analysis of scatterers[D]. Xi'an,China:Xidian University, 2012. [百度学术]
ZHANG S,ZHAO X,CAO Z,et al. Experimental study of electrical contact nonlinearity and its passive intermodulation effect[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology, 2019,10(3):424-434. [百度学术]
NETO I F F,SOARES H M V M. Simple and near-zero-waste processing for recycling gold at a high purity level from waste printed circuit boards[J]. Waste Management, 2021(135):90-97. [百度学术]
GU S E,XUE D Z,LIANG B,et al. PCB board heat transfer model based on heat transfer mechanism analysis[J]. Journal of Physics:Conference Series, 2021,2014(1):012013. [百度学术]
李浩霖. 印制电路内层铜面低粗糙度锡/硅烷处理技术及其应用研究[D]. 成都:电子科技大学, 2021. [百度学术]
LI Haolin. Study on Tin/silane treatment technology with low roughness on inner copper surface of printed circuit and its application[D]. Chengdu,China:University of Electronic Science and Technology of China, 2021. [百度学术]
师慧娟,陆冰沪,樊小伟,等. 电解铜箔表面处理技术及添加剂研究进展[J]. 中国有色金属学报, 2021,31(5):1270-1284. [百度学术]
SHI Huijuan,LYU Binghu,FAN Xiaowei,et al. Research progress of electrolytic copper foil surface treatment technology and additives[J]. The Chinese Journal of Nonferrous Metals, 2021,31(5):1270-1284. [百度学术]
赵志刚,林琪铭,姬俊安,等. 考虑趋肤效应的铁磁材料宽频损耗分离模型[J]. 中国电机工程学报, 2022,42(14):5374-5382. [百度学术]
ZHAO Zhigang,LIN Qiming,JI Junan,et al. Wideband loss separation models of ferromagnetic materials considering skin effect[J]. Proceedings of the Chinese Society for Electrical Engineering, 2022,42(14):5374-5382. [百度学术]
李旋,吴传亮,王运玖,等. 天线基站中无源互调要求的移相器印制电路板制作工艺[J]. 印制电路信息, 2021,29(8):51-55. [百度学术]
LI Xuan,WU Chuanliang,WANG Yunjiu,et al. Fabrication process of phase shifter PCB with passive intermodulation in antenna base station[J]. Printed Circuit Information, 2021,29(8):51-55. [百度学术]
黄建国,陈世金,张长明,等. 浅谈PCB制程对无源互调的影响因素与管控[J]. 印制电路信息, 2018,26(z1):1-6. [百度学术]
HUANG Jianguo,CHEN Shijin,ZHANG Changming,et al. Discussion on the effect and control of PCB manufacturing on PIM[J]. Printed Circuit Information, 2018,26(z1):1-6. [百度学术]
GETROUW M A,DUTRA A J B. The influence of some parameters on the surface roughness of thin copper foils using statistical analysis[J]. Journal of Applied Electrochemistry, 2001,31(12):1359-1366. [百度学术]
PROSINI P P,ANTONAIA A,ADDONIZIO M L. Effect of substrate surface treatment on the nucleation and crystal growth of electrodeposited copper and copper-indium alloys[J]. Thin Solid Films, 1997,298(1-2):191-196. [百度学术]
YuNG K C,WANG J,YUE T M. Surface characterization of pre-treated copper foil used for PCB lamination[J]. Journal of Adhesion Science and Technology, 2007,21(5-6):363-377. [百度学术]
WANG Z X,WANG S,YANG Z,et al. Influence of additives and pulse parameters on uniformity of through-hole copper plating[J]. Transactions of the IMF, 2010,88(5):272-276. [百度学术]
ANSUINELLI P,SCHUCHINSKY A G,FREZZA F,et al. Passive intermodulation due to conductor surface roughness[J]. IEEE Transactions on Microwave Theory and Techniques, 2018,66(2):688-699. [百度学术]
DUTEIL G,COLOMBEL F,AVRILLON S,et al. Experimental studies of passive intermodulation in metal-to-metal contacts[J]. Progress in Electromagnetics Research M, 2017(60):67-73. [百度学术]
刘彭坚. 浅析射频分布系统中无源互调的危害及预防[J]. 电子测试, 2021(15):86-88,121. [百度学术]
LIU Pengjian. The harm and prevention of passive intermodulation in RF distribution system[J]. Electronic Test, 2021(15):86-88,121. [百度学术]
PAN Y,JIANG D,GAO L. AO-4025 ITT ESA-surface treatments and coatings for reduction of multipactor and Passive Intermodulation(PIM) effect in RF components[J]. Fujian Medical Journal, 2003,17(8):601-607. [百度学术]
VICENTE C,WOLK D,HARTNAGEL H L,et al. Experimental analysis of passive intermodulation at waveguide flange bolted connections[J]. IEEE Transactions on Microwave Theory and Techniques, 2007,55(5):1018-1028. [百度学术]
JIN Q,GAO J,FLOWERS G T,et al. The impact of coating materials in coaxial connectors on Passive Intermodulation[C]// IEEE Holm Conference on Electrical Contacts. Albuquerque,NM,USA:IEEE, 2018:9-16. [百度学术]
汤朋,刘兰轩,曹东萍,等. 有机涂层附着机理及附着力提高方法综述[J]. 材料保护, 2020,53(2):126-135. [百度学术]
TANG Peng,LIU Lanxuan,CAO Dongping,et al. Review on adhesion mechanism and adhesion enhancement of organic coatings[J]. Materials Protection, 2020,53(2):126-135. [百度学术]
李韵,崔万照,王新波,等. 一种无源互调抑制同轴连接器:CN107104332A[P]. 2017-08-29. [百度学术]
LI Yun,CUI Wanzhao,WANG Xinbo,et al. Passive intermodulation suppression coaxial connector:CN107104332A[P]. 2017-08-29. [百度学术]
KOZLOV D,SHITVOV A P,BULJA S,et al. Practical mitigation of passive intermodulation in microstrip circuits[J]. IEEE Transactions on Electromagnetic Compatibility, 2018,62(1):163-172. [百度学术]
KOZLOV D,BULJA S,LUNDY R,et al. Mitigation of passive intermodulation on planar microstrip circuits with distributed current-driven nonlinearities[C]// 2018 48th European Microwave Conference(EuMC). Madrid,Spain:IEEE, 2018:1029-1032. [百度学术]
ALAM M A,AZARIAN M H,PECHT M G. Embedded capacitors in printed wiring board:a technological review[J]. Journal of Electronic Materials, 2012,41(8):2286-2303. [百度学术]
LEE S,HYUN J G,PAK J S,et al. Fabrication and characterization of embedded capacitors in printed circuit boards using B-stage epoxy/BaTiO3 composite embedded capacitor films(ECFs)[C]// The 58th Electronic Components and Technology Conference. Lake Buena Vista,FL:IEEE, 2008:742-746. [百度学术]
UlRICH R K,SCHAPER L W. Integrated passive component technology[M]. Hoboken:Wiley-IEEE Press, 2003. [百度学术]
WENG C,WEI P,WU C,et al. Embedded passives technology for bluetooth application in multi-layer Printed Wiring Board(PWB)[C]// The 54th Electronic Components and Technology Conference. La Vegas:IEEE, 2004:1124-1128. [百度学术]
周国云,何为,王守绪,等. 基于环氧树脂/钛酸钡/聚酰亚胺绝缘介质的PCB埋嵌电容的制作及性能研究[J]. 集成技术, 2014,3(6):14-22. [百度学术]
ZHOU Guoyun,HE Wei,WANG Shouxu,et al. Fabrication and characterization of embedded capacitors in PCB using epoxy/BaTiO3/PI capacitor CCL[J]. Journal of Integration Technology, 2014,3(6):14-22. [百度学术]
KUO D H,CHANG C C,SU T Y,et al. Dielectric behaviors of multi-doped BaTiO3/epoxy composites[J]. Journal of the European Ceramic Society, 2001,21(9):1171-1177. [百度学术]
张平. 基于RFID芯片应用的0.13μm高密度MIM电容制造工艺研究[D]. 上海:上海交通大学, 2008. [百度学术]
ZHANG Ping. Study on 0.13 μm high density MIM capacitor manufactory process for RFID chip application[D]. Shanghai,China:Shanghai Jiaotong University, 2008. [百度学术]
ZELENCHUK D E,SHITVOV A P,SCHUCHINSKY A G,et al. Passive intermodulation in finite lengths of printed microstrip lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2008,56(11):2426-2434. [百度学术]
ZELENCHUK D E,SHITVOV A P,SCHUCHINSKY A G,et al. Discrimination of passive intermodulation sources on microstrip lines[C]// Proceedings of the International Workshop in Multipactor,Corona and Passive Intermodulation. Valencia,Spain:[s.n.], 2008:1-4. [百度学术]
SHITVOV A P,ZELENCHUK D E,SCHUCHINSKY A G,et al. Passive intermodulation in printed lines:effects of trace dimensions and substrate[J]. IET Microwaves,Antennas & Propagation, 2009,3(2):260-268. [百度学术]
杨会平,黄为,曾碧卿,等. 松散电接触对无源互调干扰的影响机理分析[J]. 中国科学:信息科学, 2021,51(8):1316-1330. [百度学术]
YANG Huiping,HUANG Wei,ZENG Biqing,et al. Analysis of passive intermodulation distortion caused by loose electrical contact[J]. Science in China(Information Sciences), 2021,51(8):1316-1330. [百度学术]
李瑜华,景莉莉,张明涛,等. 大功率馈源类产品低PIM结构设计[J]. 太赫兹科学与电子信息学报, 2020,18(4):633-638. [百度学术]
LI Yuhua,JING Lili,ZHANG Mingtao,et al. Low PIM structure design of high power feed product[J]. Journal of Terahertz Science and Electronic Information Technology, 2020,18(4):633-638. [百度学术]
YANG H,HUANG W,WEN H,et al. Improved design of flange mount coaxial connector with low passive intermodulation distortion[J]. IEEE Transactions on Instrumentation and Measurement, 2022,71:1-7. [百度学术]
陈翔,孙冬全,崔万照,等. 一种低无源互调波导法兰转换装置:201910329798[P]. 2019-08-16. [百度学术]
CHEN Xiang,SUN Dongquan,CUI Wanzhao,et al. A low passive intermodulation waveguide flange conversion device:201910329798[P]. 2019-08-16. [百度学术]
陈翔,双龙龙,孙冬全,等. 悬置非接触式低无源互调波导法兰转换方法[J]. 西安交通大学学报, 2020,54(5):117-123. [百度学术]
CHEN Xiang,SHUANG Longlong,SUN Dongquan,et al. Suspended contactless low passive intermodulation transition of waveguide flange[J]. Journal of Xi'an Jiaotong University, 2020,54(5):117-123. [百度学术]
CHEN X,SUN D Q,CUI W Z,et al. A folded contactless waveguide flange for low passive intermodulation applications[J]. IEEE Microwave and Wireless Components Letters, 2018,28(10):864-866. [百度学术]