摘要
提出一种具有高Q值的全硅结构超表面,由上下两层硅方柱构成,可通过调节上下两层结构的方向错位距离,打破面外对称性,在不同晶格矢量处实现完美连续域束缚(BIC)态、偏振敏感的准BIC态和单向导模谐振(UGR)态的自由调控。值得注意的是,由于所提出的超表面工作在动量空间,结构对于实空间入射光的空间位置没有严格的限制。仿真结果表明,在分别打破结构几何对称性和外界入射角度对称性后,准BIC可获得1
太赫兹波(THz)是介于微波和红外波段之间的电磁波,频率在0.1~10 THz范围
上述方式需要倾斜刻蚀工艺或是悬空的周期性结构,是目前太赫兹波段加工工艺难以实现的。对此,本文提出一种太赫兹全介质URG超表面,其结构由一个中间硅衬底和上下两层二维周期性全硅介质柱构成,无需采用倾斜刻蚀工艺或悬空结构,仅通过调节上下两层结构的相对位置控制结构本征偏振的变化,实现BIC态、准BIC态、泄露模态和UGR态的切换。所提出的结构在高性能低损耗通
金属结构超表面由于其辐射损耗较高,产生的准BIC谐振Q值较

图1 双层超表面及其单元结构示意图
Fig.1 Schematic diagram of the bilayer metasurface structure and the unit cell
本文首先使用COMSOL仿真软件的有限元方法(Finite Element Method,FEM)计算结构初始状态、具有面外方向对称性的能带,如

图2 超表面在方向的能带曲线
Fig.2 Band curves of the metasurface in the -direction asymmetry
结构在dx=0和dx=36 μm时,对和偏振的频谱响应如

图3 超表面在不同偏振下的透射谱
Fig.3 Transmission spectrum of metasurface under different polarizations
为进一步探究准BIC峰的产生,本文研究了BIC1处的磁场分布,如

图4 磁场z分量强度分布
Fig.4 Intensity distribution of z-component of magnetic field
除了BIC和准BIC态的切换,在偏离单元结构中心点处,通过精细调节结构的几何参数,可得到UGR辐射。首先从能带角度对UGR的产生进行分析:在时,带TE1和带TE2由于对称保护,分别具有完美的偶电场和奇电场分布,且彼此正交,如
(1) |
式中和分别为模式的近场和远场耦合。本征态可表示为:
(2) |
式中:和为2个模式没有耦合时的本征态;和为哈密顿量的特征向量。特征值可表示为:
(3) |
特征值的实部,虚部。对于TE1和TE2模式,当没有打破面外对称性时,

图5 超表面互作用模式的电场分布和Q值
Fig.5 Electric field distribution and Q value of the metasurface interaction modes
通过调谐方向间距参数,可以影响上下两层结构之间的近场和远场耦合,从而可以在能带劈裂的互作用区域观察到UGR等现象。2个模式的相互作用会产生一个非对称保护的高Q值FW(Friedrich-Wintgen)-BIC模式和一个低Q值的UGR辐射模式,其Q值如
调谐结构的空间矢量和方向间距参数,当、时,结构产生最大的辐射不对称度,意味着97.56%的光子可通过器件耦合后单向传输。BIC模式、辐射模式和UGR模式的电场Ey分量如
本文提出了一种新型全硅结构超表面,该结构采用双层硅方柱设计,通过调整两层间的水平间距,有效破坏了面外的对称性,在不同的晶格矢量下,能够精确调控完美束缚的BIC态、偏振敏感的准BIC态以及UGR态。与金属结构相比,全硅结构的准BIC态展现出更高的Q值和更窄的线宽。仿真分析进一步证实,在破坏结构的几何对称性和改变入射角度的对称性后,准BIC态的Q值可达1
参考文献
CHEN H T,TAYLOR A J,YU N F. A review of metasurfaces:physics and applications[J]. Reports on Progress in Physics, 2016,79(7):076401. doi:10.1088/0034-4885/79/7/076401. [百度学术]
ZANG Xiaofei,YAO Bingshuang,CHEN Lin,et al. Metasurfaces for manipulating terahertz waves[J]. Light Advanced Manufacturing, 2021,2(1):1-25. doi:10.37188/lam.2021.010. [百度学术]
MARKELZ A G,MITTLEMAN D M. Perspective on terahertz applications in bioscience and biotechnology[J]. ACS Photonics, 2022,9(4):1117-1126. doi:10.1021/acsphotonics.2c00228. [百度学术]
YAN Zhiyao,ZHU Liguo,MENG Kun,et al. THz medical imaging:from in vitro to in vivo[J]. Trends in Biotechnology, 2022,40(7):816-830. doi:10.1016/j.tibtech.2021.12.002. [百度学术]
XU Guizhen,XING Hongyang,XUE Zhangqiang,et al. Recent advances and perspective of photonic bound states in the continuum[J]. Ultrafast Science, 2023(3):0033. doi:10.34133/ultrafastscience.0033. [百度学术]
KILDISHEV A V,BOLTASSEVA A,SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013,339(6125):1232009. doi:10.1126/science.1232009. [百度学术]
VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics-Uspekhi, 1968,10(4):509. [百度学术]
YIN X F,JIN J C,SOLJAČIĆ M,et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 2020,580(7804):467-471. doi:10.1038/s41586-020-2181-4. [百度学术]
ZENG Yixuan,HU Guangwei,LIU Kaipeng,et al. Dynamics of topological polarization singularity in momentum space[J]. Physical Review Letters, 2021,127(17):176101. doi:10.1103/PhysRevLett.127.176101. [百度学术]
TANG H N,DEVAULT C,CAMAYD-MUÑOZ S A,et al. Low-loss zero-index materials[J]. Nano Letters, 2021,21(2):914-920. doi:10.1021/acs.nanolett.0c03575. [百度学术]
WANG Haiwen,GUO Cheng,JIN Weiliang,et al. Engineering arbitrarily oriented spatiotemporal optical vortices using transmission nodal lines[J]. Optica, 2021,8(7):966. [百度学术]
YANG Zhenqian,SHAO Zengkai,CHEN Huazhou,et al. Spin-momentum-locked edge mode for topological vortex lasing[J]. Physical Review Letters, 2020,125(1):013903. doi:10.1103/PhysRevLett.125.013903. [百度学术]
QIAO Zhen,YUAN Zhiyi,ZHU Song,et al. High orbital angular momentum lasing with tunable degree of chirality in a symmetry-broken microcavity[J]. Optica, 2023,10(7):846-853. doi:10.1364/OPTICA.486582. [百度学术]
SROOR H,HUANG Y W,SEPHTON B,et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 2020(14):498-503. doi:10.1038/s41566-020-0623-z. [百度学术]
GUPTA M,SAVINOV V,XU N N,et al. Sharp toroidal resonances in planar terahertz metasurfaces[J]. Advanced Materials, 2016,28(37):8206-8211. doi:10.1002/adma.201601611. [百度学术]
LIU Dejun,YU Xi,WU Feng,et al. Terahertz high-Q quasi-bound states in the continuum in laser-fabricated metallic double-slit arrays[J]. Optics Express, 2021,29(16):24779-24791. doi:10.1364/OE.432108. [百度学术]
NIU Jiaqi,ZHAI Yueqi,HAN Qingqing,et al. Resonance-trapped bound states in the continuum in metallic THz metasurfaces[J]. Optics Letters, 2021,46(2):162-165. doi:10.1364/OL.410791. [百度学术]
赵正韬,张亚倩,肖中银,等. 太赫兹全金属超构表面的极化无关准BICs研究[J]. 太赫兹科学与电子信息学报, 2024,22(7): 689-694,702. [百度学术]
ZHAO Zhengtao,ZHANG Yaqian,XIAO Zhongyin,et al. Polarization-independent quasi-bound states in the continuum based on terahertz all metal metasurfaces[J]. Journal of Terahertz Science and Electronic Information Technology, 2024,22(7):689-694,702. doi:10.11805/TKYDA2024096. [百度学术]
KOSHELEV K,LEPESHOV S,LIU M K,et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 2018,121(19):193903. doi:10.1103/PhysRevLett.121.193903. [百度学术]
SUH W,WANG Z,FAN S H. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities[J]. IEEE Journal of Quantum Electronics, 2004,40(10):1511-1518. doi:10.1109/JQE.2004.834773. [百度学术]