2018 年 2 月 Journal of Terahertz Science and Electronic Information Technology

文章编号: 2095-4980(2018)01-0115-05

基于非均匀设计的高口径效率 Fabry-Perot 谐振腔天线

文 鸿,陈 星

(四川大学 电子信息学院, 四川 成都 610065)

摘 要:Fabry-Perot(F-P)谐振腔天线通常易实现高增益,但由于口径场非均匀的电磁场分布, 使得其在大口径尺寸下的口径效率较低。本文设计了一种新型的F-P谐振腔天线,该天线采用非均 匀特异媒质覆盖层实现口径场等幅分布,并通过非均匀特异媒质反射地实现口径场同相分布,从 而提升F-P谐振腔天线在大口径尺寸下的口径效率。基于射线追踪法,推导了非均匀覆盖层和非均 匀反射地的设计公式。本文设计、加工并测试了一款口径尺寸为5.18 λ(λ为自由空间波长)的圆形 F-P谐振腔天线。仿真和测试结果吻合良好, ISul<-10 dB的阻抗带宽为4.14%(5.740~5.980 GHz);在 工作频点5.8 GHz处,该新型F-P谐振腔天线的增益为23.8 dBi,与传统F-P谐振腔天线相比,其口 径效率从78.9%提高到90.5%。

关键词:口径效率;F-P谐振腔天线;非均匀特异媒质覆盖层;非均匀特异媒质反射地
 中图分类号:TN828
 文献标志码:A
 doi:10.11805/TKYDA201801.0115

A novel Fabry–Perot resonant antenna with high aperture efficiency based on non-uniform design

WEN Hong, CHEN Xing

(School of Electronic and Information Engineering, Sichuan University, Chengdu Sichuan 610065, China)

Abstract: Due to the non-uniform Electromagnetic(EM) field distribution over the superstrate, the Fabry-Perot Resonant Antenna(FPRA) is normally with high directivity but relatively low aperture efficiency when its aperture size is electrically large. A novel FPRA is proposed, both of whose superstrate and ground are designed to be non-uniform metamaterial, so as to realize the equal amplitude and cophasal distributions respectively for its aperture electromagnetic field, and thus enhance its aperture efficiency when its aperture size is electrically large. Based on the ray-tracing method, a set of formula for designing the non-uniform superstrate and ground are deduced. As a sample, a cylindrical FPRA with an aperture diameter of 5.18 λ (λ is the free space wavelength) is designed, fabricated and measured. Measured results agree well with simulated ones. It possesses an impedance bandwidth of 4.14%(5.740–5.980 GHz) when $|S_{11}|<-10$ dB. At working frequency of 5.8 GHz, its directivity is 23.8 dBi. In comparison with a conventional FPRA with uniform superstrate and ground, the proposed FPRA increases the aperture efficiency from 78.9% to 90.5%.

Keywords: aperture efficiency; Fabry-Perot Resonant Antenna; Non-uniform Metamaterial Inspired Superstrate; Non-uniform Metamaterial Inspired Ground

F-P 谐振腔天线是一种应用广泛的高增益天线,其基本结构由初级馈源、覆盖层和反射地组成。通过覆盖层的部分反射特性,以及恰当地设计距离 H,初级馈源辐射的电磁能量在覆盖层和反射地之间多次迭代反射,并在 覆盖层表面形成同相分布口径场,从而实现高增益定向辐射^[1-4]。

大多数 F-P 谐振腔天线采用均匀介质或特异媒质覆盖层,口径场幅度为高斯分布^[5]。根据天线原理,非均匀 口径场分布将制约天线增益和口径效率。在文献[6-8]中,谐振腔天线的口径效率仅为 40%~60%。已有研究^[9]指 出,当 F-P 谐振腔天线口径尺寸大于 2 λ × 2 λ (λ 为自由空间波长),其口径效率不超过 75%。

非均匀覆盖层可实现 F-P 谐振腔天线的口径场等幅分布,但覆盖层反射系数幅度和相位密切相关,非均匀覆

盖层难以避免地会破坏口径场的同相分布。针对此难题,本文设计了一款新型 F-P 谐振腔天线,分别采用非均匀特异媒质覆盖层和非均匀特异媒质反射地来实现口径场的等幅和同相分布。并以射线追踪法为基础,推导了设计公式。

1 高口径效率 F-P 谐振腔天线设计

1.1"等幅"设计

为实现 F-P 谐振腔天线等幅分布口径场,采用 PCB 板制作的特异媒质覆盖层进行非均匀设计。单元反射系数幅 值不再是一个固定值 R,而是随空间位置变化的函数。图 1 中的 R_N为经过 N 次反射后最终辐射到空间中去的 Ray_N经 由覆盖层时所处位置的反射系数幅值。覆盖层特异媒质单 元的幅值设计推导过程如下。

令点源 P 辐射的电场幅值为 E_P , 辐射角为 $\theta \circ Ray_0$ 的电场幅值为 $E_{p} \cdot T_0$, Ray_1 的电场幅值为 $E_{p} \cdot R_0 \cdot T_1$, Ray_2 的电场幅值为 $E_p \cdot R_0 \cdot R_1 \cdot T_2$, 以此类推, 可得 Ray_N 的电场幅值为:

$$E_N = E_{\rm p} \cdot \left(\prod_{M=0}^{N-1} R_M\right) \cdot T_N \tag{1}$$

式中 T_N 是与 R_N 相对应的透射系数幅值,它们满足:

$$R_N^2 + T_N^2 = 1 (2)$$

若口径面上电场成等幅分布,则任意相邻两射线 Ray_{N+1}与 Ray_N有相等的电场幅值,即:

$$E_{N+1} = E_N \tag{3}$$

将式(1)和(2)带入式(3),即可得到非均匀特异媒质覆盖层的设计公式:

$$R_{N+1} = \sqrt{\frac{2R_{N}^{2} - 1}{R_{N}^{2}}}$$
(4)

1.2"同相"设计

为实现同相口径场分布,采用 PCB 板制作的特异媒质反射地代替传统金属地。特异媒质反射地的背面为金属面,因此 其反射系数幅值为 1,故不影响口径场的等幅分布。将反射地 中心设为零相位点, ϕ_{G} 为反射地特异媒质单元的相位, ϕ_{T} , ϕ_{R} 分别为覆盖层特异媒质单元的透射系数和反射系数相位。反射 地特异媒质单元的相位设计推导过程如下。

从图 1 可以得到任意相邻两射线 *Ray_{N+1}*与 *Ray_N*之间的相位差为:

$$\phi_{N+1} = \phi_{RN} + \phi_{G(N+1)} + \phi_{T(N+1)} - \phi_{TN} - \frac{K \cdot 2h}{\cos \theta} + K \cdot 2h \tan \theta \sin \theta$$
 (5)

式中K是波数。"同相"条件为任何N满足:

$$\phi_{N+1} = 2n\pi$$

式中 *n* 为整数,将式(6)带入式(5),可以得到非均匀特异媒质 接地层的设计公式:

$$\phi_{\mathrm{G}(N+1)} = \frac{4\pi H \cos\theta}{\lambda} + \phi_{\mathrm{T}N} - \phi_{\mathrm{T}(N+1)} - \phi_{\mathrm{R}N} + 2n\pi \tag{7}$$

2 设计举例

设计的 F-P 谐振腔天线工作频率为 5.8 GHz,其圆形特异媒质覆盖层和反射地的直径为 268 mm,即 5.18 λ,

(6)

采用相对介电常数 2.65, 厚度 2 mm 的 PCB 板制作。覆盖层和反射地的特异媒质单元结构如图 2 所示,选择周期结构实现非均匀覆盖层及非均匀反射地。其中 *L*=10 mm,覆盖层/反射地的特异媒质单元的尺寸不同(*S*₁,*S*₂/*S*),将分别获得不同的反射系数幅值和相位,如图 3 所示,本文覆盖层和反射地的序列号为 0~11。

初始值 *R*₀(0.96,0.97,0.98,0.99)的确定:1) 随着 *R*₀的提高,电场幅值有所下降,可以在更大的口径面上实现 等幅分布;2) 非均匀覆盖层的理论方向性系数增量随着 *R*₀的提高而提高;3) 考虑有限口径面截断效应的影响, 比较了非均匀覆盖层表面的电场幅值与处于口径面边缘的腔体内的电场幅值。选择初始值 *R*₀=0.99,根据式(4)和 式(7)设计的非均匀特异媒质覆盖层和非均匀特异媒质反射地如图 2 所示。

该 F-P 谐振腔天线在反射地中心安装一只矩形贴片天线作为初级馈源,其中 $L_x=17.8 \text{ mm}, L_y=13.9 \text{ mm}, L_f=2.0 \text{ mm}$ 。经仿真和优化,覆盖层与反射地之间距离 H 选择为 24.9 mm。本文提出的 F-P 谐振腔天线,只需对上述提到的 4 个结构参数(L_x, L_y, L_f, H)进行扫参,以获得良好的天线性能,其他结构参数是不变的(仅与 R_0 有关)。

本文所采用的周期单元排列方式如下,平面上各个单元由二维数组(*x*,*y*)来标识,本文 *x*/*y*=0,1,2,…,12,如图 2 所示。将单元(*x*,*y*)的中心在整个口径面中的位置与 $R_N(\phi_{GN})$ 在整个序列中的位置做映射,即可获得单元(*x*,*y*)的反 射系数幅值 R_J (相位 ϕ_{GJ}),具体的公式如下:

$$J = \operatorname{int}\left\langle \frac{\sqrt{\left(x+0.5\right)^2 + \left(y+0.5\right)^2}L}{R} N_{\max} \right\rangle$$
(8)

式中 int 表示四舍五入取整, R=130 mm, N_{max}=49。

本文设计的非均匀 F-P 谐振腔天线为旋转对称结构,根据式(8),表 1 列出了其四分之一口径面特异媒质单元具体的排列位置。至此,根据式(4)、(7)、表 1,完成对所有单元的设计。

3 测试与分析

对设计的 F-P 谐振腔天线进行了加工和 测试,加工实物图如图 4 所示。图 5 给出了仿 真和测试的 $|S_{11}|$ 曲线和归一化方向图。仿真和 测试结果吻合良好,其中 $|S_{11}|$ <-10 dB,阻抗带 宽为 4.14% (5.740~5.980 GHz),其实测 *E* 面 与 *H* 面的 3 dB 主瓣波束宽度分别为 11.6°和 12.2°。5.8 GHz 的增益为 23.8 dB,相应的口 径效率达到 90.5%。

表 2 列出了本文非均匀设计与传统均匀 设计 F-P 谐振腔天线的增益和口径效率对比。

表1 二维数组(x,y)对应的覆盖层和反射地的序列号 Table1 Serial number of the NMIS and NMIG corresponding to the twodimensional array (x y)

_		a	imens	ional	array	(x,y)								
	у	0	1	2	3	4	5	6	7	8	9	10	11	12
	0	0	0	0	0	1	1	1	1	2	3	4	6	10
	1	0	0	0	0	1	1	1	1	2	3	4	7	10
	2	0	0	0	0	1	1	1	2	2	3	5	7	11
	3	0	0	0	1	1	1	1	2	2	4	5	8	
	4	1	1	1	1	1	1	2	2	3	4	6	10	
	5	1	1	1	1	1	1	2	2	4	5	8	11	
	6	1	1	1	1	2	2	2	3	4	6	10		
	7	1	1	2	2	2	2	3	4	6	9			
	8	2	2	2	2	3	4	4	6	8	11			
	9	3	3	3	4	4	5	6	9	11				
	10	4	4	5	5	6	8	10						
	11	6	7	7	8	10	11							
	12	10	10	11										

在初级馈源、口径尺寸等相同的条件下,传统均匀设计 F-P 谐振腔天线的增益最高为 23.2 dBi,口径效率仅为 78.9%,由此可见,本文的非均匀特异媒质覆盖层和非均匀特异媒质反射地设计大幅度地提高了 F-P 谐振腔天线 的增益和口径效率。

	reflection coefficient amplitude	directivity/dBi	aperture entitiency/%
uniform	0.930	22.1	61.2
	0.960	22.7	70.3
	0.970	22.9	73.6
	0.980	23.1	77.1
	0.990	23.2	78.9
	0.995	22.9	73.6
non-uniform	/	23.8	90.5

4 结论

为提高 F-P 谐振腔天线的增益和口径效率,本文提出了"非均匀特异媒质覆盖层实现等幅口径场分布,非 均匀特异媒质接地层实现同相口径场分布"的全新设计,并推导了设计公式。对天线样品的仿真和测试表明,本 文非均匀设计将传统均匀设计 F-P 谐振腔天线的口径效率从 78.9%提高到 90.5%,为高增益和高口径效率 F-P 谐振腔天线的设计提供了一种全新的有效方法。

参考文献:

- [1] TRENTINI G V. Partially reflecting sheet arrays[J]. Ire Transactions on Antennas & Propagation, 2003,4(4):666-671.
- [2] ATTIA H,YOUSEFI L,RAMAHI O. High-gain patch antennas loaded with high characteristic impedance superstrates[J]. IEEE Antennas & Wireless Propagation Letters, 2011,10(10):858-861.
- [3] THÈVENOT M,DENIS M S,REINEIX A, et al. Design of a new photonic cover to increase antenna directivity[J]. Microwave & Optical Technology Letters, 2015,22(2):136-139.
- [4] 左腾,谭菲菲,陈星. 使用非均匀特异媒质覆层的高增益谐振腔天线[J]. 太赫兹科学与电子信息学报, 2015,13(4):
 601-604. (ZUO Teng,TAN Feifei,CHEN Xing. High gain resonant cavity antenna using non-uniform metamaterial inspired superstrate[J]. Journal of Terahertz Science and Electronic Information Technology, 2015,13(4):601-604.
- [5] JOHNSON R C, JASIK H. Antenna engineering handbook[Z]. 2nd ed. 1984.
- [6] GUERIN N, ENOCH S, TAYEB G, et al. A metallic Fabry-Perot directive antenna[J]. IEEE Transactions on Antennas & Propagation, 2006, 54(1):220-224.