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Infrared small target detection algorithm based on spatial Signal to Noise Ratio
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Abstract: Dim target detection in infrared image with complex background is always a complex and
difficult task in remote sensing area. A spatial Signal-to-Noise Ratio(SNR) dim target detection scheme
with multi-frame accumulation for high frame rate imaging system is designed. At the same time, according
to the continuity of the target motion, the multi-frame confirmation method outputs the real target
trajectory. The experiment shows that the average operation time of the algorithm on vs2013 is 23 ms, and
it can effectively detect infrared dim target with SNR of 2.91. Otherwise the method has an adaption to
multi-target detection.
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1 Introduction

In space-based infrared defense system, the problem of efficient clutter rejection is a great challenge for space-based
dim target detecting and tracking. Due to solar scattering by clouds and earth surface, the intensities of background are
several times greater than the targets that are to be detected and tracked, the spatial dim target detection which is also
affected by non-uniformity correction will have a poor detection performance. When the background motion is slow, the
temporal dim target detection method based on domain gray-scale changes caused by moving targets can effectively
improve this situation' . Over past decades, many temporal dim target detection methods"”" have emerged, typically as
the Temporal Contrast Filter(TCF)-based method™ and the Temporal Variance Filter(TVF)-based method” . The
temporal variance filter method applies the temporal variance as the measurement of target detection and has an
ambiguity of the target position. Otherwise, the temporal contrast filter cannot fully use the imaging system noise level,
which will cause the problem of threshold selection. The temporal SNR-based method can overcome above limitation by
using temporal signal-to-noise to the temporal profile.

After the temporal SNR-based method target detection, there are still some residual false alarm caused by clouds and
earth surface albedo changes. The multi-frame confirmation is a necessary process to confirm target and eliminate false
alarm by using target motion characteristic. This article draws on multi-target tracking strategy, designs a standardized
flow(Fig.1) which includes trajectory start, trajectory correlation, trajectory interpolation, trajectory prediction and

trajectory confirmation.
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Fig.1 Block diagram of target detection

2 Target simulation
2.1 Mathematical model of an infrared image

Due to the platform jitter, a sequence of 2D images that are registered by an infrared focal plan array can be expressed as:
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Where &, (r,) is sensor noise; b, (r, —4,) is background; 1 ;S(r, —f —4,) is the intensity of the |th target with spatial

coordinates I, and maximal intensity is 1,(I);S() represents the point spread function; 4, is the platform jitter.

2.2 Target simulation

1

Tzannes'"' use the derivative of the Fermi function to simulate moving target spatial model.

)= aexp|[(t—b)/c] ?
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Where a is proportional to the intensity of the target; b is the time at which the target reaches the pixel; ¢ respects target

pulse width parameter.

Fig.2 is the temporal pixel profiles value which has a moving target appearance within different parameters.
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Fig.2 Temporal pixel profiles of simulation targets

3 The temporal SNR-based target detection

If 1(i, j,k) denotes the pixel intensity whose coordinate is (i, ) in the k-th frame, the temporal signal-to-noise is

denoted as equation (5) with buffer size n+1 and n frames are adopted to estimate the image noise and background

intensity.
o(i, j,k)=var{|(i, J,k=n), 1(i, j,k =n+1),---, 1(i, j,k—l)} (3)
u(i, j,k)=mean{|(i, J,k=n), I(i, j,k=n+1),---, I (i, j,k—l)} (4)
ooy AL g k) =, ik)
SNR(i, j,k)——o_(i, 0 ©)

o(i, j,k) represents image noise, U(i, j,K) represents background intensity, SNR(i, j,K) represents temporal signal-

to-noise.
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4  Multi-frame confirmation
4.1 the flow chart of multi-frame confirmation

Multi-frame confirmation method is a trajectory correlation method with the target maximum frame motion displacement
as the correlation gate radius and the current frame target position as the correlation gate center. The standardized
process conclude five steps: trajectory start, trajectory correlation, trajectory interpolation, trajectory prediction and

trajectory confirmation. The flow chart is described as Fig.3.

trajectory | trajectory | trajectory
correlation start prediction

A4

trajectory
interpolation

—>|nput parii?:i?rr The trajectory is

empty ?

trajectory start

trajectory
confirmation

output

Fig.3 Flow chart of multi-frame confirmation

Parameter initial is mainly initialized the correlation gate radius, trajectory confirmation parameter which will be
introduced in chapter 4.2.

Trajectory start refers to whether or not there is a target in the associated gate within consecutive frames, and if so,
start a trajectory.

The trajectory association is to confirm whether there is a target associated with the established trajectory within the
associated gate, and if so, update the trajectory, if not, perform trajectory interpolation.

The trajectory prediction is mainly to predict the position of the trajectory in the next frame.

The track interpolation is to use the predictive information to supplement the non-association trajectory.

The trajectory confirmation is to use the trajectory confirmation criterion to determine the authenticity of the trajectory.

If the discrimination condition is satisfied, the trajectory will be output. Otherwise, the trajectory will be deleted.
4.2 the criteria of trajectory confirmation

The trajectory confirmation is based on the following criterion.

Criteria 1: The minimum number of correlation targets & within the confirmation frame 4.

Criteria 2: The number of continuous non-correlation targets &s.

If 4 is greater than a threshold #, the trajectory is confirmed as real and 4;is greater than a threshold &, the trajectory
is confirmed as false.

The choosing of ki,k», k3 should be explained through the theory of probability statistics. Assume the temporal signal-to-

noise target detection probability is p;, the false alarm probability is p;, the size of trajectory correlation area is
N,xM, . The cumulative probability of real trajectory which has at least k; correlation targets within the confirmation

frame k» is expressed as equation (6).
1=k, -1

1=k,
RC = 3Py (1= pg)“™'=1- 3. Cipy' (1= py)*” (6)
1=k, =0
At the same time, the probability p, that has at least one false alarm in the correlation area is expressed as equation (7).

N, xM
Por =1-(@A-pg) @)
The cumulative probability of false trajectory which has at least &, correlation targets within the confirmation frame 4

is expressed as equation (8).
1=k, -1

1=k,
FC& = > Co P (L= o)=L 3 Cypy' (L= pap)! (®)

1=k, 1=0
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Otherwise, the trajectory continuous non-correlation probability is expressed as equation (9) considering that there are

already two association points at the trajectory start.

0 k<ks+2
(1-py)* k=ks+2 o)
20— Pa)* Py k=ks+3

201 py)epy +(k—ky—1)(1- py)ep? k>k;+3

The cumulative probability of real trajectory and the trajectory continuous non-correlation probability within the

confirmation frame k=15 is depicted in Fig.4(a) and Fig.4(b). The cumulative probability of false trajectory is listed in

Tablel.
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Fig.4 Trajectory confirmation probability

Obviously, when the confirmation frame 4»=15, the minimum number of correlation targets £1=9, the number of
continuous non-correlation targets k3=0, the cumulative probability of true trajectory is more than 0.95 and the cumulative
probability of false trajectory and the trajectory continuous non-correlation probability is close to 0.

Tablel Cumulative probability of false trajectory

confirmation frame k,

minimum number of correlation targets k; within the

cumulative probability of false

cumulative probability of real trajectory more than 0.95 trajectory
10 6 2.08x10°
12 7 1.85x107
14 8 1.65x10°
15 9 3.03x10°
17 9 6.96x10™
19 10 6.37x10"

5 Experiment Result

In order to validate the proposed algorithm, experiments are performed on two different star scenes which are shown in
Fig.5. Fig.5(al) and Fig.5(a2) are the original scene. Fig.5(b1) and Fig.5(b2) are the temporal signal to noise (SNR)-based
method detection results of the original scene in a frame. Fig.5(c1) and Fig.5(c2) are the output trajectory after multi-
frame confirmation. The spatial SNR statistics window used in the experiment is 10, and the multi-frame confirmation
parameters are set up to £1=9, k=15, k;=6.

The spatial SNR of the detected stars in different scenes are shown in Fig.6. One star was detected in scene 1, and the
direction were detected in scene 2. The lowest SNR of

star moved in 135° direction and two stars which moved in 45°

the detected star is 2.91. The running time is about 23 ms within ¢ plus language, meeting the real-time requirement.
6 Conclusions
From the above experiment results, the proposed method in this paper which is not affected by detector non-uniformity

correction can effectively detect the dim target with SNR greater by three times, and the real target trajectory will be

output after the appropriate parameter multi-frame confirmation. The method is practical in engineering applications.
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Fig.5 SNR-based detection and multi-frame confirmation results
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Fig.6 SNR of multi-frame confirmation target
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